You can use the displacement method or the eureka can so basically in the displacement can what you have to do is to put some water into a measuring cylinder and measure its volume before adding the irregular shaped object and then measuring the level of water which had been displaced and then eureka can you can check online
Answer:
a) 4.485 kg b) 3.94 kg
Explanation:
since the maximum tension the line can stand is 44 N and for question a the speed is constant (acceleration must be zero since the velocity or speed is not changing), F(tension) = mass * acceleration due to gravity (g) .
44 = m * 9.81m/s^2
m = 44/9.81 = 4.485kg
b) F(tension) = ma + mg ( where a is the acceleration of the body and g is the acceleration of the gravity)
44 = m (a +g)
44 = m (1.37 + 9.81)
44/11.18 = m
m = 3.94 kg
Answer:
If one of the parents is white and the other is brown, their offspring will be either white or brown with equal probabilities. Rabbits in this population mate randomly; thus, the probability of mating two white rabbits is the same as the probability of mating between two brown rabbits.
Explanation:
Answer:
Air slows down The fall of any object including a ball.
Answer:
3. Kinetic energy of the system is maximum when potential energy is minimum.
Explanation:
Given that
Mass of block= m
Spring constant =K
Table is friction less.
As we know that in oscillatory motion ,when kinetic energy is maximum then potential energy will become minimum.
At the mean position:
Kinetic energy is maximum.
Potential energy is minimum.
At the extreme position:
Kinetic energy is minimum.
Potential energy is maximum.
At the mean position velocity of block will be maximum that is why it have maximum kinetic energy and at the extreme position the velocity of block will be minimum that is why it have minimum kinetic energy.
So from above we can say that kinetic energy of the system is maximum when potential energy is minimum.