Answer:
Explanation:
There will be reaction force by each vertical post on horizontal plank . Let it be R₁ and R₂ . R₁ is reaction force by the post nearer to woman
Taking torque of all forces about the end far away from the woman
Torque by reaction force = R₁ x 5.5
= 5.5 R₁ upwards
Torque by weight of woman in opposite direction , downwards
= - 804 x ( 5.5 - 1.55 )
= - 3175.8
Torque by weight of the plank in opposite direction , downwards .
= - 27 x 5.5 / 2
= - 74.25
Torque by R₂ will be zero as it passes through the point about which torque is being taken .
Total torque
= 5.5 R₁ - - 3175.8 - - 74.25 = 0 ( For equilibrium )
5.5 R₁ = 3250
R₁ = 590.9 N .
Answer:
Newton's third law of motion.
Explanation:
We are told the force needed to throw the full soda can was more than that needed to throw the empty can.
Now, the weight of the full soda can will be more than that of the empty can. Therefore, the full can will demand more force than that of the empty can due to Newton's third law of motion which states that to every action, there is an equal and opposite reaction.
41.2 = h-1/2g(t-1)^2
<span> {-h = -1/2gt^2-1/2g+g*t-41.2
</span><span> {h = 1/2gt^2
</span><span> summing them up
</span><span> 0 = -1/2g+g*t-41.2
</span><span> 41.2 +4.9 = g*t
</span><span> t = 46.1/9.8 = 4.70 sec
</span><span> h = 1/2gt^2 =4.9*(4.70^2) = 108.241 m </span>
C and E Gravitational and Chemical energy
Answer:
165.77J
Explanation:
M₁ = 0.107kg
u₁ = 300m/s
m₂ = 3kg
u₂ = 0
v =
m₁u₁ + m₂u₂ = (m₁ + m₂)V
(0.107*300) + 0 = (0.107 + 3)V
V = 32.1 / 3.107 = 10.33m/s
kinetic energy of the system after collision =
½m1v² + ½m2v²
K.E = ½(m1 + m2)v²
K.E = ½(0.107+3) * 10.33²
K.E = 165.77J