Mass of KCl= 1.08 g
<h3>Further explanation</h3>
Given
1 g of K₂CO₃
Required
Mass of KCl
Solution
Reaction
K₂CO₃ +2HCl ⇒ 2KCl +H₂O + CO₂
mol of K₂CO₃(MW=138 g/mol) :
= 1 g : 138 g/mol
= 0.00725
From the equation, mol ratio K₂CO₃ : KCl = 1 : 2, so mol KCl :
= 2/1 x mol K₂CO₃
= 2/1 x 0.00725
= 0.0145
Mass of KCl(MW=74.5 g/mol) :
= mol x MW
= 0.0145 x 74.5
= 1.08 g
For the first question, salt is soluble while sand is insoluble or not dissolvable in water. The salt should have vanished or melted, but the sand stayed noticeable or visible, making a dark brown solution probably with some sand particles caught on the walls of the container when the boiling water was put in to the mixture of salt and sand. The solubility of a chemical can be disturbed by temperature, and in the case of salt in water, the hot temperature of the boiling water enhanced the salt's capability to melt in it.
For the second question, the melted or dissolved salt should have easily made its way through the filter paper and into the second container, while the undissolved and muddy sand particles is caught on the filter paper. The size of the pores of the filter paper didn’t change. On the contrary, the size of the salt became smaller because it has been dissolved which is also the reason why it was able to go through the filter paper, while the size of the sand may have doubled or even tripled which made it harder to pass through.
B. carbon-13 is not an allotrope of Carbon.
Allotropes<span> are elements on the periodic table that have more than one crystalline form. </span>Isotopes<span> are atoms of the same element with the same atomic number but have a different mass number.
C-13 is an isotope of carbon, not an allotrope.</span>
Answer: 292.54g of Ag
Explanation:
Cu + 2AgNO3 →Cu(NO3)2 + 2 Ag
mass conc. Of Ag = n x molar Mass
Mass conc. Of Ag = 2 x 108 = 216g
From the equation,
63.5g of Cu produced 216g of Ag
Therefore, 86g of Cu will produce Xg of Ag. i.e
Xg of Ag = (86 x 216)/63.5 = 292.54g
The alloy has a density of 21.186g/cc. So for a kilogram or 1000 grams/21.186 g/cc= 45.7 cc. So the answer is 45.7 cc of the allow to make up a kilogram which shows that the density of the allow can be used to calculate the volume of a larger mass ie the kilogram.