The formula to be used for this problem is as follows:
E = hc/λ, where h is the Planck's constant, c is the speed of light and λ is the wavelength. Also 1 aJ = 10⁻¹⁸ J
0.696×10⁻¹⁸ = (6.62607004×10⁻³⁴ m²·kg/s)(3×10⁸ m/s)/λ
Solving for λ,
λ = 2.656×10⁻⁷ m or <em>0.022656 nm</em>
When parallel rays exit a concave lens, the light rays are divergent.
The rays diverge or bend away from the axis it has been traveling upon entering the lens when it reaches the other side of the lens. These rays appear to have come from the same focal point before entering the concave lens. When these parallel rays are extended, it will be traced back to a single point of origin.
Shaking a phone cord, strumming a guitar string, playing a trumpet
D. As more electrons are added to an element, the number of electron orbitals being filled increases