1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Airida [17]
3 years ago
10

At a certain location close to Earth's surface, we observe a uniform electric field of magnitude 105 N/C directed straight down.

What must be the charge (in C) that needs to be placed on a person of mass 81 kg in order to make them lose contact with the ground? Make sure to correctly identify the sign of the charge needed.
Physics
1 answer:
Crazy boy [7]3 years ago
6 0

Answer:

- 7.56 C

Explanation:

E = 105 N/C downwards

m = 81 kg

Let the charge on the man is q.

To lose te contact with the ground, the electrostatic foece should be balanced by the weight of the person.

The charge should be negative in nature so that the direction of electrostatic force is upwards and weight is downwards.

q E = m g

q = (81 x 9.8) / 105 = 7.56 C

You might be interested in
A 4-lb ball b is traveling around in a circle of radius r1 = 3 ft with a speed (vb)1 = 6 ft>s. if the attached cord is pulled
Leya [2.2K]
Position #1:
radius, r₁ = 3 ft
Tangential speed, v₁ = 6 ft/s

By definition, the angular speed is
ω₁ = v₁/r₁ = (3 ft/s) / (3 ft) = 1 rad/s

Position #2:
Radius, r₂ = 2 ft

By definition, the moment of inertia in positions 1 and 2 are respectively
I₁ = (4 lb)*(3 ft)² = 36 lb-ft²
I₂ = (4 lb)*(2 ft)² = 16 lb-ft²

Because momentum is conserved,
I₁ω₁ = I₂ω₂
Therefore the angular velocity in position 2 is
ω₂ = (I₁/I₂)ω₁
      = (36/16)*1 = 2.25 rad/s
The tangential velocity in position 2 is
v₂ = r₂ω₂ = (2 ft)*(225 rad/s) = 4.5 ft/s

At each position, there is an outward centripetal force.
In position 1, the centripetal force is
F₁ = m*(v²/r₂) = (4)*(6²/3) = 48 lbf
In position 2, the centripetal force is
F₂ = (4)*(4.5²/2) = 40.5 lbf

The radius diminishes at a rate of 2 ft/s.
Therefore the force versus distance curve is as shown below.

The work done is the area under the curve, and it is
W = (1/2)*(48.0+40.5 ft)*(3-2 ft) = 44.25 ft-lb

Answer:  44.25 ft-lb


6 0
3 years ago
A particular planet has a moment of inertia of 9.74 × 1037 kg ⋅ m2 and a mass of 5.98 × 1024 kg. Based on these values, what is
malfutka [58]

Answer:  A) 6.38(10)^{6} m

Explanation:

The equation for the moment of inertia I of a sphere is:

I=\frac{2}{5}mr^{2} (1)

Where:

I=9.74(10)^{37}kg m^{2} is the moment of inertia of the planet (assumed with the shape of a sphere)

m=5.98(10)^{24}kg is the mass of the planet

r is the radius of the planet

Isolating r from (1):

r=\sqrt{\frac{5I}{2m}} (2)

Solving:

r=\sqrt{\frac{5(9.74(10)^{37}kg m^{2})}{2(5.98(10)^{24}kg)}} (3)

Finally:

r=6381149.077m \approx 6.38(10)^{6} m

Therefore, the correct option is A.

4 0
3 years ago
The force that attracts earth to an object is equal to and opposite the force that earth exerts on the object. Explain why earth
alexandr402 [8]

Answer:

Because of heavy mass

Explanation:

When force acts on a body it tends to accelerate the body. The acceleration produced in the body depends on two things:

1). Magnitude of force

2). Mass of the body

F= ma

⇒ a = F/m  

As the force exerted on earth and another object are the equal in magnitude but opposite in direction. This forces will accelerate the object toward the earth but can't accelerate the earth as earth has very high mass.

a = F/m

This force tends to accelerate the earth but but due to earth's inertia the earth does not accelerate.

7 0
3 years ago
Each proton-proton cycle generates 26.7 MeV of energy. If 9.9 Watts are generated via by the proton-proton cycle, how many billi
lina2011 [118]

Answer:

4.635 *10^12 Neutrinos

Explanation:

Here in this question, we are to determine the number of neutrinos in billions produced, given the power generated by the proton-proton cycle.

We proceed as follows;

In proton-proton cycle generates 26.7 MeV of energy and in this cycle two neutrinos are produced.

From the question, we are given that

Power P = 9.9 watts = 9.9 J/s

Watts is same as J/s

The number of proton-proton cycles required to generate E energy is N = E / E '

Where E ' = Energy generated in proton-proton cycle which is given as 26.7 Mev in the question

Converting Mev to J, we have

= 26.7 x1.6 x10 -13 J

To get the number N which is the number of proton-proton cycle required, we have;

N = 9.9 /(26.7 x1.6 x10^-13) = 2.32 * 10^12

Since we have two proton cycles( proton-proton), it automatically means 2 neutrinos will be produced.

Therefore number of neutrions produced = 2 x Number of proton-proton cycles = 2 * 2.32 * 10^12 = 4.635 * 10^12 neutrinos

8 0
3 years ago
How do forces work In nature? (short answer please I'm lazy) ​
melisa1 [442]

Answer:

Fundamental force, also called fundamental interaction, in physics, any of the four basic forces—gravitational, electromagnetic, strong, and weak—that govern how objects or particles interact and how certain particles decay. All the known forces of nature can be traced to these fundamental forces

Explanation:

6 0
3 years ago
Read 2 more answers
Other questions:
  • Match the parts of an atom to the colors in this picture:
    11·2 answers
  • What is the volume of the shape below? <br><br> Help me plzzzz
    10·1 answer
  • Which of the following ways is usable energy lost?
    14·2 answers
  • Which statement best describes ionic bonding?
    8·2 answers
  • Downstream peripheral pulses have a higher pulse pressure because the pressure wave travels faster than the blood itself. What o
    15·1 answer
  • if motorbike can travel 90 kilometre on 2 litre of petrol find the distance it can travel on 5 litre of petrol​
    14·1 answer
  • A transformation of ΔSTV results in ΔUTV. Which transformation maps the pre-image to the image?
    13·2 answers
  • PLZZ HELP ASAP!!
    8·1 answer
  • A 1.60-kg object is held 1.05 m above a relaxed, massless vertical spring with a force constant of 330 N/m. The object is droppe
    8·1 answer
  • As an airplane is flying 20.0 degrees north of east at a speed of 750 km/h. How fast is it moving to the north
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!