Answer: The measure in degrees of angle S is 33.7°
Step-by-step explanation: Please see the attachments below for the complete question as well as the Step-by-step explanation
Answer: area= 4.7
Area=pi*r^2=3.14*1.5=4.71=4.7 (nearest tenth)
Answer: The volume of the tetrahedron is 2 units.
Step-by-step explanation:
Let A = (1, 1, 1)
B = (1, 5, 5)
C = (2, 2, 1)
The volume of a tetrahedron is given as
V = (1/6)|AB, AC, AD|
Where |AB, AC, AD| is the determinant of the matrix of AB, AC, AD.
We need to determine AB, AC, and AD
Suppose A = (a1, a2, a3)
B = (b1, b2, b3)
C = ( c1, c2, c3)
AB = ( b1 - a1, b2 - a2, b3 - a3)
Similarly for AB, AC, BC, etc.
AB = (1 - 1, 5 - 1, 5 - 1)
= (0, 4, 4)
AC = (1, 0, 2)
AD = (1, 1, 0)
Volume =
(1/6) |0 4 4|
|1 0 2|
|1 1 0|
= (1/6)[0(0 - 2) - 4(0 - 2) + 4(1 - 0)
= (1/6)(0 + 8 - 4)
= (1/6)(12)
V = 12/6 = 2 units
Answer:
(-8,-10)
Step-by-step explanation:
Rewrite (x+8)2(x+8)² as (x+8)(x+8).
f(x)=3((x+8)(x+8))−10
Expand (x+8) (x+8) using the FOIL Method.
Apply the distributive property.
f(x)=3(x(x+8)+8(x+8))−10
Apply the distributive property.
f(x)=3(x⋅x+x⋅8+8(x+8))−10
Apply the distributive property.
Simplify and combine like terms.
Simplify each term.
Multiply x by x.
f(x)=3(x2+x⋅8+8x+8⋅8)−10
Move 8 to the left of x.
f(x)=3(x2+8⋅x+8x+8⋅8)−10
Multiply 8 by 8.
f(x)=3(x2+8x+8x+64)−10
Add 8x and 8x.
f(x)=3(x2+16x+64)−10
Apply the distributive property.
f(x)=3x2+3(16x)+3⋅64−10
Simplify.
Multiply 16 by 3.
f(x)=3x2+48x+3⋅64−10
Multiply 3 by 64.
f(x)=3x2+48x+192−10
Subtract 10 from 192.
f(x)=3x2+48x+182
The minimum of a quadratic function occurs at x=
If a is positive, the minimum value of the function is f (
).
Substitute in the values of aa and b.
x=−
x=-8
Replace the variable x with −8 in the expression.
f(−8)=3(−8)2+48(−8)+182
Y=-10
Therefore, the minimum value is (-8,-10) but if it is asking for just the y-value it would be -10.
Answer:
18
Step-by-step explanation: