I think A would be correct
Answer:
470 is your awnser
Step-by-step explanation:
Answer:

Step-by-step explanation:
observe
||a–b+c|| = ||a+b+c||
(a-b+c)² = (a+b+c)²
(a+b+c)² – (a-b+c)² = 0
((a+b+c)+(a-b+c))((a+b+c)–(a-b+c)) = 0
(2a+2c)(2b) = 0
(a+c)b = 0
a•b + c•b = 0
||a||×||b||×cos(π/8) + ||c||×||b||×cos(θ) = 0

Answer: The vertex of the parabola (quadratic function) is (-2,-4)
Fourth option: (-2,-4)
Solution:
y=x^2+4x
y=ax^2+bx+c; a=1, b=4, c=0
Vertex: V=(h,k)
h=-b/(2a)
h=-4/(2(1))
h=-4/2
h=-2
y=x^2+4x
k=y=h^2+4h
k=(-2)^2+4(-2)
k=4-8
k=-4
Vertex: V=(h,k)
Vertex: V=( -2, -4)