Using the binomial distribution, the probabilities are given as follows:
- 0.3675 = 36.75% probability that more than 4 weigh more than 20 pounds.
- 0.1673 = 16.73% probability that fewer than 3 weigh more than 20 pounds.
- Since P(X > 7) < 0.05, it would be unusual if more than 7 of them weigh more than 20 pounds.
<h3>What is the binomial distribution formula?</h3>
The formula is:


The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
The values of the parameters for this problem are:
n = 10, p = 0.4.
The probability that more than 4 weigh more than 20 pounds is:

In which:

Then:






Hence:


0.3675 = 36.75% probability that more than 4 weigh more than 20 pounds.
The probability that fewer than 3 weigh more than 20 pounds is:
P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2) = 0.0061 + 0.0403 + 0.1209 = 0.1673
0.1673 = 16.73% probability that fewer than 3 weigh more than 20 pounds.
For more than 7, the probability is:





Since P(X > 7) < 0.05, it would be unusual if more than 7 of them weigh more than 20 pounds.
More can be learned about the binomial distribution at brainly.com/question/24863377
#SPJ1
The rational negative 6 over 5.,3.5,0 point 5 bar,. square root of 4.
Hope this helps :)
12 are tankesr
40 cars total
12/40
12/40=6/20=3/10
3/10=tankders
10/10-3/10=7/10
7/10=70/100=70%
70% wern't tankser
Answer:
The equation of the quadratic function shown is;
x^2+ 2x -3
Step-by-step explanation:
Here in this question, we need to know the quadratic equation whose graph was shown.
The key to answering this lies in knowing the roots of the equation.
The roots of the equation are the solution to the quadratic equation and can be seen from the graph at the point where the quadratic equation crosses the x-axis.
The graph crosses the x-axis at two points.
These are at the points x = -3 and x = 1
So what we have are;
x + 3 and x -1
Multiplying both will give us the quadratic equation we are looking for.
(x + 3)(x-1) = x(x -1) + 3(x-1)
= x^2 -x + 3x -3 = x^2 + 2x -3
Answer:
±3i
Step-by-step explanation:
Given the value ±√-9, we are to express the value using the imaginary number 'I'
±√-9 = ±√9×-1
= ±√9 × √-1
In complex number, √-1 = i
The expression becomes;
±√9 = ±3 × i
±√9 = ±3i
Hence the value in simplified form is ±3i