Answer:
(-1 , 1.5)
Step-by-step explanation:
Answer:

Step-by-step explanation:
By definition, two lines are perpendicular if and only if their slopes are negative reciprocals of each other:
, or equivalently,
.
Given our linear equation 3x + y = 3 (or y = -3x + 3):
We can find the equation of the line (with a y-intercept of 5) that is perpendicular to y = -3x + 3 by determining the negative reciprocal of its slope, -3, which is
.
To test whether this is correct, we can take first slope,
, and multiply it with the negative reciprocal slope
:


Therefore, we came up with the correct slope for the other line, which is
.
Finally, the y-intercept is given by (0, 5). Therefore, the equation of the line that is perpendicular to 3x + y = 3 is:

Answer:$5.95
Step-by-step explanation:
Answer:
4.


5.


Step-by-step explanation:
The sides of a (30 - 60 - 90) triangle follow the following proportion,

Where (a) is the side opposite the (30) degree angle, (
) is the side opposite the (60) degree angle, and (2a) is the side opposite the (90) degree angle. Apply this property for the sides to solve the two given problems,
4.
It is given that the side opposite the (30) degree angle has a measure of (8) units. One is asked to find the measure of the other two sides.
The measure of the side opposite the (60) degree side is equal to the measure of the side opposite the (30) degree angle times (
). Thus the following statement can be made,

The measure of the side opposite the (90) degree angle is equal to twice the measure of the side opposite the (30) degree angle. Therefore, one can say the following,

5.
In this situation, the side opposite the (90) degree angle has a measure of (6) units. The problem asks one to find the measure of the other two sides,
The measure of the side opposite the (60) degree angle in a (30-60-90) triangle is half the hypotenuse times the square root of (3). Therefore one can state the following,

The measure of the side opposite the (30) degree angle is half the hypotenuse (the side opposite the (90) degree angle). Hence, the following conclusion can be made,
