Answer:
The fourth term of the expansion is -220 * x^9 * y^3
Step-by-step explanation:
Question:
Find the fourth term in (x-y)^12
Solution:
Notation: "n choose k", or combination of k objects from n objects,
C(n,k) = n! / ( k! (n-k)! )
For example, C(12,4) = 12! / (4! 8!) = 495
Using the binomial expansion formula
(a+b)^n
= C(n,0)a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 + C(n,3)a^(n-3)b^3 + C(n,4)a^(n-4)b^4 +....+C(n,n)b^n
For (x-y)^12, n=12, k=3, a=x, b=-y, and the fourth term is
C(n,3)a^(n-3)b^3
=C(12,3) * x^(12-3) * (-y)^(3)
= 220*x^9*(-y)^3
= -220 * x^9 * y^3
Answer:
![\boxed{4 \sqrt[8]{ {d}^{3} } }](https://tex.z-dn.net/?f=%20%5Cboxed%7B4%20%5Csqrt%5B8%5D%7B%20%7Bd%7D%5E%7B3%7D%20%7D%20%7D%20)
Step-by-step explanation:
![= > 4 {d}^{ \frac{3}{8} } \\ \\ = > 4({d}^{3 \times \frac{1}{8} }) \\ \\ = > 4( {d}^{3} \times {d}^{ \frac{1}{8} } ) \\ \\ = > 4( {d}^{3} \times \sqrt[8]{d} ) \\ \\ = > 4 \sqrt[8]{ {d}^{3} }](https://tex.z-dn.net/?f=%20%3D%20%20%3E%204%20%7Bd%7D%5E%7B%20%5Cfrac%7B3%7D%7B8%7D%20%7D%20%20%20%5C%5C%20%20%5C%5C%20%3D%20%20%20%3E%204%28%7Bd%7D%5E%7B3%20%5Ctimes%20%20%5Cfrac%7B1%7D%7B8%7D%20%7D%29%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%3E%204%28%20%7Bd%7D%5E%7B3%7D%20%20%5Ctimes%20%20%20%7Bd%7D%5E%7B%20%5Cfrac%7B1%7D%7B8%7D%20%7D%20%29%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%3E%204%28%20%7Bd%7D%5E%7B3%7D%20%20%5Ctimes%20%20%5Csqrt%5B8%5D%7Bd%7D%20%29%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%3E%204%20%20%5Csqrt%5B8%5D%7B%20%7Bd%7D%5E%7B3%7D%20%7D%20)
Answer:
11x2+6x
Step-by-step explanation:
Answer:
a=24000/120=200
Step-by-step explanation:
area= a*b
Area=24000
a=120
b=200