Answer:
∠1 is 33°
∠2 is 57°
∠3 is 57°
∠4 is 33°
Step-by-step explanation:
First off, we already know that ∠2 is 57° because of alternate interior angles.
Second, it's important to know that rhombus' diagonals bisect each other; meaning they form 90° angles in the intersection. Another cool thing is that the diagonals bisect the existing angles in the rhombus. Therefore, 57° is just half of something.
Then, you basically just do some other pain-in-the-butt things after.
Since that ∠2 is just the bisected half from one existing angle, that means that ∠3 is just the other half; meaning that ∠3 is 57°, as well.
Next is to just find the missing angle ∠1. Since we already know ∠3 is 57°, we can just add that to the 90° that the diagonals formed at the intersection.
57° + 90° = 147°
180° - 147° = 33°
∠1 is 33°
Finally, since that ∠4 is just an alternate interior angle of ∠1, ∠4 is 33°, too.
To check whether a function is odd or even, we simply substitute the argument by its negative version, namely "x" by "-x".
if the expression simplifies to resemble the original expression, that simply means the expression is
even. If it resembles the original negative expression, is
odd.

well, that doesn't look like the original
- 2x³ - 9, so is not
even.
and -f(x) would be
2x³ + 9, and that doesn't look like either, so is not
odd.
thus is neither.