1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ahrayia [7]
3 years ago
8

The dimensions of a square are altered so that 8inches is added to one side while 3 inches is subtracted from the other. The are

a of the resulting rectangle is 126in^2 .What was the original side length of the square?
Mathematics
1 answer:
OlgaM077 [116]3 years ago
7 0
Let s original sides, l length, w width:

s+8=l

s-3=w

lw= 126in²

substitute:

(s+8)(s-3)=126

s²+5s-24=126

s²+5x-150=0

(s-10)(s+15)

s=10

each side is 10 inches


You might be interested in
Of the marbles in a bag, 4 are yellow, 5 are blue, and 4 are red. Sandra will randomly choose one
Tom [10]

Answer:

where is part b? Part A is 4/13

Step-by-step explanation:

this is because in total there are 13 marbles. and when you pull out a marble. 4 of them can be red. you can simplify that fraction if need be.

3 0
3 years ago
OLIVE
RoseWind [281]

Answer:

The slope is 2/3

Step-by-step explanation:

m=y²-y1/x²-x¹

m=6-4/5-2

m=2/3

6 0
2 years ago
Prove that: (b²-c²/a)CosA+(c²-a²/b)CosB+(a²-b²/c)CosC = 0​
IRISSAK [1]

<u>Prove that:</u>

\:\:\sf\:\:\left(\dfrac{b^2-c^2}{a}\right)\cos A+\left(\dfrac{c^2-a^2}{b}\right)\cos B +\left(\dfrac{a^2-b^2}{c}\right)\cos C=0

<u>Proof: </u>

We know that, by Law of Cosines,

  • \sf \cos A=\dfrac{b^2+c^2-a^2}{2bc}
  • \sf \cos B=\dfrac{c^2+a^2-b^2}{2ca}
  • \sf \cos C=\dfrac{a^2+b^2-c^2}{2ab}

<u>Taking</u><u> </u><u>LHS</u>

\left(\dfrac{b^2-c^2}{a}\right)\cos A+\left(\dfrac{c^2-a^2}{b}\right)\cos B +\left(\dfrac{a^2-b^2}{c}\right)\cos C

<em>Substituting</em> the value of <em>cos A, cos B and cos C,</em>

\longmapsto\left(\dfrac{b^2-c^2}{a}\right)\left(\dfrac{b^2+c^2-a^2}{2bc}\right)+\left(\dfrac{c^2-a^2}{b}\right)\left(\dfrac{c^2+a^2-b^2}{2ca}\right)+\left(\dfrac{a^2-b^2}{c}\right)\left(\dfrac{a^2+b^2-c^2}{2ab}\right)

\longmapsto\left(\dfrac{(b^2-c^2)(b^2+c^2-a^2)}{2abc}\right)+\left(\dfrac{(c^2-a^2)(c^2+a^2-b^2)}{2abc}\right)+\left(\dfrac{(a^2-b^2)(a^2+b^2-c^2)}{2abc}\right)

\longmapsto\left(\dfrac{(b^2-c^2)(b^2+c^2)-(b^2-c^2)(a^2)}{2abc}\right)+\left(\dfrac{(c^2-a^2)(c^2+a^2)-(c^2-a^2)(b^2)}{2abc}\right)+\left(\dfrac{(a^2-b^2)(a^2+b^2)-(a^2-b^2)(c^2)}{2abc}\right)

\longmapsto\left(\dfrac{(b^4-c^4)-(a^2b^2-a^2c^2)}{2abc}\right)+\left(\dfrac{(c^4-a^4)-(b^2c^2-a^2b^2)}{2abc}\right)+\left(\dfrac{(a^4-b^4)-(a^2c^2-b^2c^2)}{2abc}\right)

\longmapsto\dfrac{b^4-c^4-a^2b^2+a^2c^2}{2abc}+\dfrac{c^4-a^4-b^2c^2+a^2b^2}{2abc}+\dfrac{a^4-b^4-a^2c^2+b^2c^2}{2abc}

<em>On combining the fractions,</em>

\longmapsto\dfrac{(b^4-c^4-a^2b^2+a^2c^2)+(c^4-a^4-b^2c^2+a^2b^2)+(a^4-b^4-a^2c^2+b^2c^2)}{2abc}

\longmapsto\dfrac{b^4-c^4-a^2b^2+a^2c^2+c^4-a^4-b^2c^2+a^2b^2+a^4-b^4-a^2c^2+b^2c^2}{2abc}

<em>Regrouping the terms,</em>

\longmapsto\dfrac{(a^4-a^4)+(b^4-b^4)+(c^4-c^4)+(a^2b^2-a^2b^2)+(b^2c^2-b^2c^2)+(a^2c^2-a^2c^2)}{2abc}

\longmapsto\dfrac{(0)+(0)+(0)+(0)+(0)+(0)}{2abc}

\longmapsto\dfrac{0}{2abc}

\longmapsto\bf 0=RHS

LHS = RHS proved.

7 0
2 years ago
I don’t know what to do after this
aalyn [17]
Simplify 123/8 then multiply 5/8 and x2 then add those two and subtract 6 sry if it's confusing
8 0
3 years ago
Read 2 more answers
Find the volume of the cone. Use 3.14 for pi.
hram777 [196]

Answer:

V≈157.08

Step-by-step explanation:

I hope this helps

5 0
3 years ago
Other questions:
  • Solve the formula for the variable y.
    9·1 answer
  • What is the quotient of 5/12÷3/8
    14·2 answers
  • Analyze the diagram below and complete the instructions that follow.
    12·1 answer
  • If you make 6 dollars an hour how much do you make if you work 6 hours?
    10·2 answers
  • Find the volume of this composite figure and explain how you got your answer
    11·1 answer
  • What is the probability of getting a composite number on the first roll of a die and getting a prime number on the second roll?
    11·1 answer
  • Here are two five-pointed stars. A student said, “Both figures A and B are polygons. They are both composed of line segments and
    15·2 answers
  • The table shows the number of words a
    7·1 answer
  • Find value of x. round to nearest tenth.
    6·1 answer
  • Dustin completed 3/8 of a homework that has 32 problems. how many problems did he complete
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!