Answer:
B) 16.67
Explanation:
If the dimension of one lumber is 2" × 6", the total area of one lumber will be 12inch²
If the total board feet of lumber there is 200in, therefore the total board of lumber that will be needed is 200/12 which gives 16.67 lumbers
The electric potential at the origin of the xy coordinate system is negative infinity
<h3>What is the electric field due to the 4.0 μC charge?</h3>
The electric field due to the 4.0 μC charge is E = kq/r² where
- k = electric constant = 9.0 × 10 Nm²/C²,
- q = 4.0 μC = 4.0 × 10 C and
- r = distance of charge from origin = x₁ - 0 = 2.0 m - 0 m = 2.0 m
<h3>What is the electric field due to the -4.0 μC charge?</h3>
The electric field due to the -4.0 μC charge is E = kq'/r² where
- k = electric constant = 9.0 × 10 Nm²/C²,
- q' = -4.0 μC = -4.0 × 10 C and
- r = distance of charge from origin = 0 - x₂ = 0 - (-2.0 m) = 0 m + 2.0 m = 2.0 m
Since both electric fields are equal in magnitude and directed along the negative x-axis, the net electric field at the origin is
E" = E + E'
= -2E
= -2kq/r²
<h3>What is the electric potential at the origin?</h3>
So, the electric potential at the origin is V = -∫₂⁰E".dr
= -∫₂⁰-2kq/r².dr
Since E and dr = dx are parallel and r = x, we have
= -∫₂⁰-2kqdxcos0/x²
= 2kq∫₂⁰dx/x²
= 2kq[-1/x]₂⁰
= -2kq[1/x]₂⁰
= -2kq[1/0 - 1/2]
= -2kq[∞ - 1/2]
= -2kq[∞]
= -∞
So, the electric potential at the origin of the xy coordinate system is negative infinity
Learn more about electric potential here:
brainly.com/question/26978411
#SPJ11
It's called the "Wavelength". It corresponds to <span>the distance from any point on a wave to an identical point on the next wave and could also be from crest to crest or trough to trough.
Hope this helps !
Photon</span>
Answer:
1) The matter absorbs or reflects the light
2) Lens
3) <u><em>Concave</em></u>- curves inwards. Diverges light
b.<u><em>Convex</em></u>- curves outward. Converges light
4) The image is real if the distance of the object from the lens is greater than the focal length and virtual if it is less than the focal length
5) Lens and, for convex lenses, on the distance between the lens and the object.
6) Index of refraction?
Explanation:
I hope this helped you, sorry if anything is wrong
Efficiency = (Wanted) energy out ÷ energy in × 100
Energy in = 400J
Wanted Energy out = 240J
Energy cannot be used up, only transferred, so the remaining energy is most likely to be transferred into unwanted energy (loss of energy) such as heat energy.
Efficiency = 240 ÷ 400 × 100
Efficiency = 0.6 × 100
Efficiency = 60%