<span>Remember that impulse = change in
momentum
this means we compute the momentum of the ball just before impression and just
after; we know the mass, so we find the speeds
the ball falls for 1.5m and will achieve a speed given by energy
conservation:
1/2 mv^2 = mgh => v=sqrt[2gh]=5.42m/s
since it rises only to 0.85 m, we compute the initial speed after power from
the same equation and get
v(after)=sqrt[2*9.81m/s/s*0.85m] = 4.0837 m...
now, recall that momentum is a vector, so that the momentum down has one sign and
the momentum up has a positive sign, so we have
impulse = delta (mv) = m delta v = 0.014 kx (4.08m/s - (-5.42m/s) = 0.133 kgm/s </span>
Spiral galaxies are most common
Answer:
the cat is 0.4238 m in front of the dog as it leaps through the window
Explanation:
Given that;
acceleration a = 0.85 m/s²
speed v = 1.40 m/s
the cat is at rest, so initial velocity u = 0
we know that, since the cat is sleeping on the floor in the middle of a 2.8-m-wide room, it needs to cover (2.8 m / 2 ) distance to get to the window;
using the second equation equation of motion;
s = ut + 1/2 at²
we substitute
2.8/2 = 0×t + 1/2 × 0.85 × t²
1.4 = 0.425t²
t = √( 1.4 / 0.425 )
t = 1.81497 sec
now, at acceleration 0.10 m/s²
the dog has to cover the distance;
s = ut + 1/2 at²
s = ( 1.4 × 1.81497) - 1/2 × 0.10 × 1.81497²
s = 2.540958 - 0.1647
s = 2.3762 m
The cant in front of the dog as it leaps through the window;
distance = 2.8 m - 2.3762 m
distance = 0.4238 m
Therefore, the cat is 0.4238 m in front of the dog as it leaps through the window
Answer:
C. At the instant the ball reaches its highest point.
Explanation:
When a body is thrown up, it tends to come down due to the influence of gravitational force acting on the body. The body will be momentarily at rest at its maximum point before falling. At this maximum point, the velocity of the body is zero and since force acting on a body is product of the mass and its acceleration, the force acting on the body at that point will be "zero"
Remember, F = ma = m(v/t)
Since v = 0 at maximum height
F = m(0/t)
F = 0N
This shows that the force acting on the body is zero at the maximum height.
Do you have the answer choices ?