Answer:
65.87 s
Explanation:
For the first time,
Applying
v² = u²+2as.............. Equation 1
Where v = final velocity, u = initial velocity, a = acceleration, s = distance
From the question,
Given: u = 0 m/s (from rest), a = 1.99 m/s², s = 60 m
Substitute these values into equation 1
v² = 0²+2(1.99)(60)
v² = 238.8
v = √238.8
v = 15.45 m/s
Therefore, time taken for the first 60 m is
t = (v-u)/a............ Equation 2
t = (15.45-0)/1.99
t = 7.77 s
For the final 40 meter,
t = (v-u)/a
Given: v = 0 m/s(decelerates), u = 15.45 m/s, a = -0.266 m/s²
Substitute into the equation above
t = (0-15.45)/-0.266
t = 58.1 seconds
Hence total time taken to cover the distance
T = 7.77+58.1
T = 65.87 s
Answer:
The current flows through the insulator is 2 mA.
Explanation:
Given that,
Resistance 
Voltage = 200 kV
We need to calculate the current
Using ohm's law


Where, I = current
V = voltage
R = resistance
Put the value into the formula



Hence, The current flows through the insulator is 2 mA.
By definition, the electric force is given by:

Where,
q1: electric charge of object number 1.
q2: electric charge of object number 2.
d: distance between both objects
k: proportionality constant
Therefore, the magnitude of the electric force is affected by:
1) The product of the charges of the objects
2) The distance between objects
Answer:
The factors that affect strength of the electric force between two objects are:
1) The product of the charges of the objects
2) The distance between objects
Answer:
The detector temperature doesn't affect retention time
Explanation:
Retention time is one of the chromatographic parameters. Is defined as the time of a compound spends from injection to detection.
A solute in GC is added to the injector where is volatilized. When volatilized, it pass through a column until the detector.
The detector temperature doesn't affect retention time. To change retention time you must change injector temperature or column temperature. An increase in column or injector temperature results in a decrease in retention time.