Answer:
Step-by-step explanation:
Directions
- Draw a circle
- Dear a chord with a length of 24 inside the circle. You just have to label it as 24
- Draw a radius that is perpendicular and a bisector through the chord
- Draw a radius that is from the center of the circle to one end of the chord.
- Label where the perpendicular radius to the chord intersect. Call it E.
- You should get something that looks like the diagram below. The only thing you have to do is put in the point E which is the midpoint of CB.
Givens
AC = 13 inches Given
CB = 24 inches Given
CE = 12 inches Construction and property of a midpoint.
So what we have now is a right triangle (ACE) with the right angle at E.
What we seek is AE
Formula
AC^2 = CE^2 + AE^2
13^2 = 12^2 + AE^2
169 = 144 + AE^2 Subtract 144 from both sides.
169 - 144 = 144-144 + AE^2 Combine
25 = AE^2 Take the square root of both sides
√25 = √AE^2
5 = AE
Answer
The 24 inch chord is 5 inches from the center of the circle.
Answer:
78.81%
Step-by-step explanation:
We are given;
Population mean; μ = 149
Sample mean; x¯ = 147.8
Sample size; n = 88
standard deviation; σ = 14
Z-score is;
z = (x¯ - μ)/(σ/√n)
Plugging in the relevant values;
z = (147.8 - 149)/(14/√88)
z = -0.804
From z-distribution table attached, we have; p = 0.21186
P(X > 147.8) = 1 - 0.21186 = 0.78814
In percentage gives; p = 78.81%
I have an expression
floating around in my head; let's see if it makes sense.
The variance of binary valued random variable b that comes up 1 with probability p (so has mean p) is
That's for an individual sample. For the observed average we divide by n, and for the standard deviation we take the square root:
Plugging in the numbers,
One standard deviation of the average is almost 2% so a 27% outcome was 3/1.9 = 1.6 standard deviations from the mean, corresponding to a two sided probability of a bit bigger than 10% of happening by chance.
So this is borderline suspect; most surveys will include a two sigma margin of error, say plus or minus 4 percent here, and the results were within those bounds.
Answer:
This is always ''interesting'' If you see an absolute value, you always need to deal with when it is zero:
(x-4)=0 ===> x=4,
so that now you have to plot 2 functions!
For x<= 4: what's inside the absolute value (x-4) is negative, right?, then let's make it +, by multiplying by -1:
|x-4| = -(x-4)=4-x
Then:
for x<=4, y = -x+4-7 = -x-3
for x=>4, (x-4) is positive, so no changes:
y= x-4-7 = x-11,
Now plot both lines. Pick up some x that are 4 or less, for y = -x-3, and some points that are 4 or greater, for y=x-11
In fact, only two points are necessary to draw a line, right? So if you want to go full speed, choose:
x=4 and x= 3 for y=-x-3
And just x=5 for y=x-11
The reason is that the absolute value is continuous, so x=4 works for both:
x=4===> y=-4-3 = -7
x==4 ====> y = 4-11=-7!
abs() usually have a cusp int he point where it is =0
Step-by-step explanation: