Answer:
In the form of
Y= mx+c
Y= 1/2x +2
m = 1/2
Step-by-step explanation:
A linear equation in it's standard form is in the format
Y= mx+c
Where m is the slope and c is the y intercept
Let's use these two points to determine both the slope and the equation
(2, 3), (4,4)
Slope= (y2-y1)/(x2-x1)
Slope= (4-3)/(4-2)
Slope= 1/2
Equation of the linear function
(Y-y1)/(x-x1)= m
(Y-3)/(x-2)= 1/2
2(y-3) = x-2
2y -6 = x-2
2y= x-2+6
2y= x+4
Y= 1/2x +2
You have to do 10.56 plus 88 and you will have your answer
Answer:
Step-by-step explanation:
hello : here is a solution
1. Let a and b be coefficients such that

Combining the fractions on the right gives



so that

2. a. The given ODE is separable as

Using the result of part (1), integrating both sides gives

Given that y = 1 when x = 1, we find

so the particular solution to the ODE is

We can solve this explicitly for y :


![\ln|y| = \ln\left|\sqrt[3]{\dfrac{5x}{2x+3}}\right|](https://tex.z-dn.net/?f=%5Cln%7Cy%7C%20%3D%20%5Cln%5Cleft%7C%5Csqrt%5B3%5D%7B%5Cdfrac%7B5x%7D%7B2x%2B3%7D%7D%5Cright%7C)
![\boxed{y = \sqrt[3]{\dfrac{5x}{2x+3}}}](https://tex.z-dn.net/?f=%5Cboxed%7By%20%3D%20%5Csqrt%5B3%5D%7B%5Cdfrac%7B5x%7D%7B2x%2B3%7D%7D%7D)
2. b. When x = 9, we get
![y = \sqrt[3]{\dfrac{45}{21}} = \sqrt[3]{\dfrac{15}7} \approx \boxed{1.29}](https://tex.z-dn.net/?f=y%20%3D%20%5Csqrt%5B3%5D%7B%5Cdfrac%7B45%7D%7B21%7D%7D%20%3D%20%5Csqrt%5B3%5D%7B%5Cdfrac%7B15%7D7%7D%20%5Capprox%20%5Cboxed%7B1.29%7D)
The answer is the 3rd one