Hyp^2 = leg1^2 + leg2^2
hyp^2 -leg1^2 = leg2^2
17^2 - 8^2 = leg2^2
leg2^2 = 289 -64
leg2^2 = 225
leg2 = 15
I'm assuming
is the shape parameter and
is the scale parameter. Then the PDF is

a. The expectation is
![E[X]=\displaystyle\int_{-\infty}^\infty xf_X(x)\,\mathrm dx=\frac29\int_0^\infty x^2e^{-x^2/9}\,\mathrm dx](https://tex.z-dn.net/?f=E%5BX%5D%3D%5Cdisplaystyle%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20xf_X%28x%29%5C%2C%5Cmathrm%20dx%3D%5Cfrac29%5Cint_0%5E%5Cinfty%20x%5E2e%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20dx)
To compute this integral, recall the definition of the Gamma function,

For this particular integral, first integrate by parts, taking


![E[X]=\displaystyle-xe^{-x^2/9}\bigg|_0^\infty+\int_0^\infty e^{-x^2/9}\,\mathrm x](https://tex.z-dn.net/?f=E%5BX%5D%3D%5Cdisplaystyle-xe%5E%7B-x%5E2%2F9%7D%5Cbigg%7C_0%5E%5Cinfty%2B%5Cint_0%5E%5Cinfty%20e%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20x)
![E[X]=\displaystyle\int_0^\infty e^{-x^2/9}\,\mathrm dx](https://tex.z-dn.net/?f=E%5BX%5D%3D%5Cdisplaystyle%5Cint_0%5E%5Cinfty%20e%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20dx)
Substitute
, so that
:
![E[X]=\displaystyle\frac32\int_0^\infty y^{-1/2}e^{-y}\,\mathrm dy](https://tex.z-dn.net/?f=E%5BX%5D%3D%5Cdisplaystyle%5Cfrac32%5Cint_0%5E%5Cinfty%20y%5E%7B-1%2F2%7De%5E%7B-y%7D%5C%2C%5Cmathrm%20dy)
![\boxed{E[X]=\dfrac32\Gamma\left(\dfrac12\right)=\dfrac{3\sqrt\pi}2\approx2.659}](https://tex.z-dn.net/?f=%5Cboxed%7BE%5BX%5D%3D%5Cdfrac32%5CGamma%5Cleft%28%5Cdfrac12%5Cright%29%3D%5Cdfrac%7B3%5Csqrt%5Cpi%7D2%5Capprox2.659%7D)
The variance is
![\mathrm{Var}[X]=E[(X-E[X])^2]=E[X^2-2XE[X]+E[X]^2]=E[X^2]-E[X]^2](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BX%5D%3DE%5B%28X-E%5BX%5D%29%5E2%5D%3DE%5BX%5E2-2XE%5BX%5D%2BE%5BX%5D%5E2%5D%3DE%5BX%5E2%5D-E%5BX%5D%5E2)
The second moment is
![E[X^2]=\displaystyle\int_{-\infty}^\infty x^2f_X(x)\,\mathrm dx=\frac29\int_0^\infty x^3e^{-x^2/9}\,\mathrm dx](https://tex.z-dn.net/?f=E%5BX%5E2%5D%3D%5Cdisplaystyle%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20x%5E2f_X%28x%29%5C%2C%5Cmathrm%20dx%3D%5Cfrac29%5Cint_0%5E%5Cinfty%20x%5E3e%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20dx)
Integrate by parts, taking


![E[X^2]=\displaystyle-x^2e^{-x^2/9}\bigg|_0^\infty+2\int_0^\infty xe^{-x^2/9}\,\mathrm dx](https://tex.z-dn.net/?f=E%5BX%5E2%5D%3D%5Cdisplaystyle-x%5E2e%5E%7B-x%5E2%2F9%7D%5Cbigg%7C_0%5E%5Cinfty%2B2%5Cint_0%5E%5Cinfty%20xe%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20dx)
![E[X^2]=\displaystyle2\int_0^\infty xe^{-x^2/9}\,\mathrm dx](https://tex.z-dn.net/?f=E%5BX%5E2%5D%3D%5Cdisplaystyle2%5Cint_0%5E%5Cinfty%20xe%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20dx)
Substitute
again to get
![E[X^2]=\displaystyle9\int_0^\infty e^{-y}\,\mathrm dy=9](https://tex.z-dn.net/?f=E%5BX%5E2%5D%3D%5Cdisplaystyle9%5Cint_0%5E%5Cinfty%20e%5E%7B-y%7D%5C%2C%5Cmathrm%20dy%3D9)
Then the variance is
![\mathrm{Var}[X]=9-E[X]^2](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BX%5D%3D9-E%5BX%5D%5E2)
![\boxed{\mathrm{Var}[X]=9-\dfrac94\pi\approx1.931}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cmathrm%7BVar%7D%5BX%5D%3D9-%5Cdfrac94%5Cpi%5Capprox1.931%7D)
b. The probability that
is

which can be handled with the same substitution used in part (a). We get

c. Same procedure as in (b). We have

and

Then

7 is the answer because 7 is great and is always the answer
Answer:
The answer is (-0.7, -9.4)
Step-by-step explanation:
1) Since we are using the substitution method, and we know that y = 2x-1, in the first equation, plug that into y. It should look like this:
4x-2(12x-1) = 14
4x -24x + 2 = 14
2) Combine like terms and continue to simplify until you get a direct answer for each variable.
-20x + 2 = 14.
-20x = 12.
x = -7/10 (or -0.7)
3) Now we know what x equals, so to find our y-coordinate, we will plug this into either equation.
y = 12(-7/10) -1
y= -84/10 -1
y= -9.4
4) Now that we have our x value and y value, we know our point. The solution is (-0.7, -9.4).