Answer
7% . . ...................
The degree of the polynomial is 7
Answer:
The option "StartFraction 1 Over 3 Superscript 8" is correct
That is
is correct answer
Therefore
Step-by-step explanation:
Given expression is ((2 Superscript negative 2 Baseline) (3 Superscript 4 Baseline)) Superscript negative 3 Baseline times ((2 Superscript negative 3 Baseline) (3 squared)) squared
The given expression can be written as
![[(2^{-2})(3^4)]^{-3}\times [(2^{-3})(3^2)]^2](https://tex.z-dn.net/?f=%5B%282%5E%7B-2%7D%29%283%5E4%29%5D%5E%7B-3%7D%5Ctimes%20%5B%282%5E%7B-3%7D%29%283%5E2%29%5D%5E2)
To find the simplified form of the given expression :
![[(2^{-2})(3^4)]^{-3}\times [(2^{-3})(3^2)]^2](https://tex.z-dn.net/?f=%5B%282%5E%7B-2%7D%29%283%5E4%29%5D%5E%7B-3%7D%5Ctimes%20%5B%282%5E%7B-3%7D%29%283%5E2%29%5D%5E2)
( using the property
)
( using the property 
( combining the like powers )
( using the property
)

( using the property
)
Therefore
Therefore option "StartFraction 1 Over 3 Superscript 8" is correct
That is
is correct answer
Answer:
f(x) = 2(x -3)² +5 or f(x) = 2x² -12x +23
Step-by-step explanation:
The equation of a quadratic is easily written in vertex form when the coordinates of the vertex are given. Here, the point one horizontal unit from the vertex is 2 vertical units higher, indicating the vertical scale factor is +2.
__
<h3>vertex form</h3>
The vertex form equation for a parabola is ...
f(x) = a(x -h)² +k . . . . . . vertex (h, k); vertical scale factor 'a'
<h3>equation</h3>
For vertex (h, k) = (3, 5) and vertical scale factor a=2, the vertex form equation of the parabola is ...
f(x) = 2(x -3)² +5 . . . . . vertex form equation
Expanded to standard form, this is ...
f(x) = 2(x² -6x +9) +5
f(x) = 2x² -12x +23 . . . . . standard form equation