I believe it is D, stratified random sampling.
Hope this helps!!
The answer is c. 
a.
(2.2≠5.11) (2.2 is not equal to 5.11)
b.
or 0.625 (0.625≠5.11) (0.625 is not equal to 5.11)
c.
(5.11=5.11) (5.11 is equal to 5.11)
Therefore c is the answer
So with this, you can rewrite the equation as: 
Firstly, solve the multiplication: 
Next, combine like terms, and <u>your answer will be:
</u>
Answer:
357 minutes
Step-by-step explanation:
I subtracted 9 cents/minute from the 23 cents/minute to get 14 cents to get the difference between the two per minute charges. I then divided the monthly cost of $49.95 by .14 to get 356.79... So if you used 357 minutes in a month, the second plan would be 3 cents cheaper at $82.08 (.09 x 357= 32.13 + 49.95), vs. the first plan costing $82.11 (.23 x 357). At 356 minutes the first plan would still be cheaper.
If inspection department wants to estimate the mean amount with 95% confidence level with standard deviation 0.05 then it needed a sample size of 97.
Given 95% confidence level, standard deviation=0.05.
We know that margin of error is the range of values below and above the sample statistic in a confidence interval.
We assume that the values follow normal distribution. Normal distribution is a probability that is symmetric about the mean showing the data near the mean are more frequent in occurence than data far from mean.
We know that margin of error for a confidence interval is given by:
Me=
α=1-0.95=0.05
α/2=0.025
z with α/2=1.96 (using normal distribution table)
Solving for n using formula of margin of error.

n=
=96.4
By rounding off we will get 97.
Hence the sample size required will be 97.
Learn more about standard deviation at brainly.com/question/475676
#SPJ4
The given question is incomplete and the full question is as under:
If the inspection division of a county weights and measures department wants to estimate the mean amount of soft drink fill in 2 liters bottles to within (0.01 liter with 95% confidence and also assumes that standard deviation is 0.05 liter. What is the sample size needed?