Ok, this is a 2d kinematics problem, the falls 14 m part is confusing, I think it means in the x direction, but you don't need it anyway.
If we know it goes 4m into the air, we know d = 4m (height of wall), we also know the acceleration a=-9.8m/s^2 (because gravity) and that the vertical velocity when it just clears the wall will be 0 m/s, which we'll call our final velocity (Vf). Using Vf^2 = Vi^2 +2a*d, we can solve this for Vi and drop Vf because it's zero to get: Vi = sqrt(-2ad), plug in numbers (don't forget a is negative) and you get 8.85 m/s in the vertical direction. The x-direction velocity requires that we solve the y-direction for time, using Vf= Vi + at, we solve for t, getting t= -Vi/a, plug in numbers t= -8.85/-9.8 = 0.9 s. Now we can use the simple v = d/t (because x-direction has no acceleration (a=0)), and plug in the distance to the wall and the time it takes to get there v = (4/.9) = 4.444 m/s, this is the velocity in the x direction, we use Pythagoras' theorem to find the total velocity, Vtotal = sqrt(Vx^2 + Vy^2), so Vtotal = sqrt(8.85^2+4.444^2) = 9.9m/s. Yay physics!
Answer:
T= 2p√m/k
Explanation:
This is because the period of oscillation of the mass of spring system is directly proportional to the square root of the mass and it is inversely proportional to the square root of the spring constant.
The period of a mass on a spring is given by the equation
T=2π√m/k.
Where T is the period,
M is mass
K is spring constant.
An increase in mass in a spring increases the period of oscillation and decrease in mass decrease period of oscillation.
Answer:
Explanation:
Machines simply make work easier to do. They increase the amount of force exerted on a body and also the distance through which the force is applied. Also, they can also change the direction through which force on them is applied in order to produce much more work.
Work done = force x distance
The input force in a machine is attenuated to yield even more force. This is the purpose of designing a simple machine. When the force increases, more work would be produce with our little effort applied on the body.
Work done is a function of the force applied on a body and the distance through which it moves.
Answer:
-963.93 m/s²
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration


The acceleration of Superman would be -963.93 m/s² from Lois' perspective
Answer:
- magnitude : 1635.43 m
- Angle: 130°28'20'' north of east
Explanation:
First, we will find the Cartesian Representation of the
and
vectors. We can do this, using the formula

where
its the magnitude of the vector and θ the angle. For
we have:


where the unit vector
points east, and
points north. Now, the
will be:

Now, taking the sum:

This is




Now, for the magnitude, we just have to take its length:



For its angle, as the vector lays in the second quadrant, we can use:



