I think you forgot to give the choices along with the question. I am answering the question based on my knowledge and research. You would increase mechanical advantage by <span>making the blade longer from the cutting edge. I hope that this is the answer that has actually come to your desired help.</span>
Answer: W =
J
Explanation: Since the potassium ion is at the outside membrane of a cell and the potential here is lower than the potential inside the cell, the transport will need work to happen.
The work to transport an ion from a lower potential side to a higher potential side is calculated by

q is charge;
ΔV is the potential difference;
Potassium ion has +1 charge, which means:
p =
C
To determine work in joules, potential has to be in Volts, so:

Then, work is


To move a potassium ion from the exterior to the interior of the cell, it is required
J of energy.
Well there are a couple ways.
1: The easiest, plant cells have a cell wall or extra protection. You will not find this on an animal cell, as there is only a membrane.
2: Chloroplast. This also will not be found in animal cells as they produce the plant's green color as well as the sugar.
Hope this helps!
Answer:
When studying nanotechnology, scientists must be aware that their ideas may not work out. Their work could be very time consuming and cost a lot of money. Finally, scientists do not yet know all of the effects of nanotechnology on human health.
Hope it helps u:)
It stands for Unified Computing System
I hope I helped :3