decomposing water does not require High activation energy
Answer:
a,b) #_ {electron} = 1.64 10¹⁹ electrons, c) R = 19.54 Ω, d) V = 10.3 V
Explanation:
a and b) The current is defined as the number of electrons that pass per unit of time
let's look for the load
Q = I t
Q = 0.526 5
Q = 2.63 C
Let's use a direct rule of three proportions. If an electron has a charge of 1.6 10⁻¹⁹ C, how many electrons does 2.63 C have?
#_ {electron} = 2.63 C (1 electron / 1.6 10⁻¹⁹)
#_ {electron} = 1.64 10¹⁹ electrons
c) the resistance of a wire is given by
R = ρ l / A
where the resistivity of tungsten is 5.6 10⁻⁸ Ω
the area of the wire is
A = π r2 = π d²/4
we substitute
R = 
let's calculate
R = 5.6 10⁻⁸ 0.580
R = 19.54 Ω
d) let's use ohm's law
V = i R
V = 0.526 19.54
V = 10.3 V
Answer:
The rate of transfer of heat is 0.119 W
Solution:
As per the question:
Diameter of the fin, D = 0.5 cm = 0.005 m
Length of the fin, l =30 cm = 0.3 m
Base temperature, 
Air temperature, 
k = 388 W/mK
h = 
Now,
Perimeter of the fin, p = 
Cross-sectional area of the fin, A = 
A = 
To calculate the heat transfer rate:

where

Now,

Answer:
18.63 N
Explanation:
Assuming that the sum of torques are equal
Στ = Iα
First wheel
Στ = 5 * 0.51 = 3 * (0.51)² * α
On making α subject of formula, we have
α = 2.55 / 0.7803
α = 3.27
If we make the α of each one equal to each other so that
5 / (3 * 0.51) = F2 / (3 * 1.9)
solve for F2 by making F2 the subject of the formula, we have
F2 = (3 * 1.9 * 5) / (3 * 0.51)
F2 = 28.5 / 1.53
F2 = 18.63 N
Therefore, the force F2 has to 18.63 N in order to impart the same angular acceleration to each wheel.
Answer:
distance = 3 + 4 = 7 mi
displacement is √(3² + 4²) = 5 mi
Explanation: