Answer:
Basketball: $6.75
Football: $7.50
Step-by-step explanation:
lmk if you want an explanation
Answer:
F. Picture F
Step-by-step explanation:
FOIL is a mnemonic rule for multiplying binomial (that is, two-term) algebraic expressions.
FOIL abbreviates the sequence "First, Outside, Inside, Last"; it's a way of remembering that the product is the sum of the products of those four combinations of terms.
For instance, if we multiply the two expressions
(x + 1) (x + 2)
then the result is the sum of these four products:
x times x (the First terms of each expression)
x times 2 (the Outside pair of terms)
1 times x (the Inside pair of terms)
1 times 2 (the Last terms of each expression)
and so
(x + 1) (x + 2) = x^2 + 2x + 1x + 2 = x^2 + 3x + 2
[where the ^ is the usual way we indicate exponents here in Answers, because they're hard to represent in an online text environment].
Now, compare this to multiplying a pair of two-digit integers:
37 × 43
= (30 × 40) + (30 × 3) + (7 × 40) + (7 × 3)
= 1200 + 90 + 280 + 21
= 1591
The reason the two processes resemble each other is that multiplication is multiplication; the difference in the ways we represent the factors doesn't make it a fundamentally different operation.
<span>The maxima of a differential equation can be obtained by
getting the 1st derivate dx/dy and equating it to 0.</span>
<span>Given the equation h = - 2 t^2 + 12 t , taking the 1st derivative
result in:</span>
dh = - 4 t dt + 12 dt
<span>dh / dt = 0 = - 4 t + 12 calculating
for t:</span>
t = -12 / - 4
t = 3
s
Therefore the maximum height obtained is calculated by
plugging in the value of t in the given equation.
h = -2 (3)^2 + 12 (3)
h =
18 m
This problem can also be solved graphically by plotting t
(x-axis) against h (y-axis). Then assigning values to t and calculate for h and
plot it in the graph to see the point in which the peak is obtained. Therefore
the answer to this is:
<span>The ball reaches a maximum height of 18
meters. The maximum of h(t) can be found both graphically or algebraically, and
lies at (3,18). The x-coordinate, 3, is the time in seconds it takes the ball
to reach maximum height, and the y-coordinate, 18, is the max height in meters.</span>