1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
My name is Ann [436]
3 years ago
15

Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of

F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = x i − z j + y k S is the part of the sphere x2 + y2 + z2 = 49 in the first octant, with orientation toward the origin
Mathematics
1 answer:
Tomtit [17]3 years ago
4 0

Apparently my answer was unclear the first time?

The flux of <em>F</em> across <em>S</em> is given by the surface integral,

\displaystyle\iint_S\mathbf F\cdot\mathrm d\mathbf S

Parameterize <em>S</em> by the vector-valued function <em>r</em>(<em>u</em>, <em>v</em>) defined by

\mathbf r(u,v)=7\cos u\sin v\,\mathbf i+7\sin u\sin v\,\mathbf j+7\cos v\,\mathbf k

with 0 ≤ <em>u</em> ≤ π/2 and 0 ≤ <em>v</em> ≤ π/2. Then the surface element is

d<em>S</em> = <em>n</em> • d<em>S</em>

where <em>n</em> is the normal vector to the surface. Take it to be

\mathbf n=\dfrac{\frac{\partial\mathbf r}{\partial v}\times\frac{\partial\mathbf r}{\partial u}}{\left\|\frac{\partial\mathbf r}{\partial v}\times\frac{\partial\mathbf r}{\partial u}\right\|}

The surface element reduces to

\mathrm d\mathbf S=\mathbf n\,\mathrm dS=\mathbf n\left\|\dfrac{\partial\mathbf r}{\partial u}\times\dfrac{\partial\mathbf r}{\partial v}\right\|\,\mathrm du\,\mathrm dv

\implies\mathbf n\,\mathrm dS=-49(\cos u\sin^2v\,\mathbf i+\sin u\sin^2v\,\mathbf j+\cos v\sin v\,\mathbf k)\,\mathrm du\,\mathrm dv

so that it points toward the origin at any point on <em>S</em>.

Then the integral with respect to <em>u</em> and <em>v</em> is

\displaystyle\iint_S\mathbf F\cdot\mathrm d\mathbf S=\int_0^{\pi/2}\int_0^{\pi/2}\mathbf F(x(u,v),y(u,v),z(u,v))\cdot\mathbf n\,\mathrm dS

=\displaystyle-49\int_0^{\pi/2}\int_0^{\pi/2}(7\cos u\sin v\,\mathbf i-7\cos v\,\mathbf j+7\sin u\sin v\,\mathbf )\cdot\mathbf n\,\mathrm dS

=-343\displaystyle\int_0^{\pi/2}\int_0^{\pi/2}\cos^2u\sin^3v\,\mathrm du\,\mathrm dv=\boxed{-\frac{343\pi}6}

You might be interested in
HELP DUE IN 20 MINS!<br><br> x = ??
DerKrebs [107]

\huge{ \mathcal{  \underline{ Answer} \:  \:  ✓ }}

We know,

  • 27 \times (x + 27)  = 36 {}^{2}

  • x + 27 =  \dfrac{1296}{27}

  • x + 27 = 48

  • x = 21

______________________

\mathrm{ ☠ \: TeeNForeveR \:☠ }

4 0
2 years ago
Solve r = 1/2m^2p for p
hoa [83]
You just have to arrange the equation such that the p is the only term at the left hand side of the equation. Express it in terms of r and m. 

r = 1/2*m²*p
Divide both left and right hand side equations by 1/2*m²
p = r/(1/2 *m²)
Take the reciprocal of 1/2 and multiply it. The final answer is:
p = 2r/m²
7 0
3 years ago
Calculating Rate of change
ivolga24 [154]

Answer/Step-by-step explanation:

We are given the following coordinates of two points on the line of the graph shown in the question as: A(2, 1) and B(4, 2)

Vertical change from point A = y_2 - y_1 = 2 - 1 = 1

Horizontal change from point A = x_2 - x_1 = 4 - 2 = 2

Rate of change = \frac{y_2 - y_1}{x_2 - x_1} = \frac{1}{2} = 0.5

3 0
3 years ago
Determine the selling price and amount of increase of a $450 painting with a 45% markup
melomori [17]

45% of 450 is 202.50

$202.50 is the price of markup

$652.50 is the selling price

8 0
3 years ago
What is the surface area of the figure shown?
Shalnov [3]

Answer:

The surface area of the figure = 962 ft²

Step-by-step explanation:

The rectangle dimensions and its area given below

Dimensions       Number         Area

12 x 7                2                   12 x 7 x 2 = 168

16 x 7                1                    16 x 7 = 112

12 x (16 + 5)     1                    12 x 21 = 252

16 x 12              1                    16 x 12 = 192

16 x 13              1                     16 x 13 = 208

Triangle dimensions

Dimensions           Number         Area

b = 12  & h = 5       2                bh/2 = (12*5)/2  = 30

To find total area

Total area = 168 + 112 + 252 + 192 + 208 + 30 = 962 ft²

5 0
3 years ago
Other questions:
  • Sue uses the expression (8×3,000)+(8×200)+(8×9) to help solve a multiplication problem. What is sues multiplication problem?
    8·1 answer
  • A car is purchased for $27,000 . After each year, the resale value decreases by 30% . What will the resale value be after 3 year
    15·2 answers
  • What are the next two numbers and what's the pattern?
    14·2 answers
  • A piecewise function is shown below
    10·1 answer
  • At what times of the day between 10:00 A.M. and 5:00 P.M. do the chemistry presentation and the recycling presentation start at
    14·1 answer
  • In figure, what is the value of y?
    6·1 answer
  • The probability that any one egg is not spoiled in a carton of 6 eggs is 75%
    10·1 answer
  • A. A frog is climbing out of a well that is 8 feet deep. The frog can climb 4 feet per
    13·1 answer
  • WILL MARK BRAINLYIST
    8·1 answer
  • If a system of equations has infinite solutions, what does the graph look like? Describe it in at least one complete sentence.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!