Answer:
x = -2
y = -1
(-2, -1)
General Formulas and Concepts:
<u>Pre-Algebra</u>
- Order of Operations: BPEMDAS
- Equality Properties
<u>Algebra I</u>
- Solving systems of equations using substitution/elimination
- Solving systems of equations by graphing
Step-by-step explanation:
<u>Step 1: Define systems</u>
y = x + 1
3x + 3y = -9
<u>Step 2: Solve for </u><em><u>x</u></em>
<em>Substitution</em>
- Substitute in <em>y</em>: 3x + 3(x + 1) = -9
- Distribute 3: 3x + 3x + 3 = -9
- Combine like terms: 6x + 3 = -9
- Isolate <em>x</em> term: 6x = -12
- Isolate <em>x</em>: x = -2
<u>Step 3: Solve for </u><em><u>y</u></em>
- Define original equation: y = x + 1
- Substitute in <em>x</em>: y = -2 + 1
- Add: y = -1
<u>Step 4: Graph systems</u>
<em>Check the solution set.</em>
Answer:
2 (x-5) = 10
2x-10 = 10
2x = 10 + 10
x = 20/2
x = 10
Step-by-step explanation:
You solve an expression for a variable if that variable sits alone on one side of the equation, and everything else is on the other side.
So, our goal is to leave
alone on the right hand side, and move everything else to the left.
So, we start with

We multiply both sides by 3:

We divide both sides by 

To compute the required height, simply plug in the values:
