
> 0
First, note that x is undefined at 5. / x ≠ 5
Second, replace the inequality sign with an equal sign so that we can solve it like a normal equation. / Your problem should look like:

= 0
Third, multiply both sides by x - 5. / Your problem should look like: 3x - 5 = 0
Forth, add 5 to both sides. / Your problem should look like: 3x = 5
Fifth, divide both sides by 3. / Your problem should look like: x =
Sixth, from the values of x above, we have these 3 intervals to test:
x <


< x < 5
x > 5
Seventh, pick a test point for each interval.
1. For the interval x <

:
Let's pick x - 0. Then,

> 0
After simplifying, we get 1 > 0 which is true.
Keep this interval.
2. For the interval

< x < 5:
Let's pick x = 2. Then,

> 0
After simplifying, we get -0.3333 > 0, which is false.
Drop this interval.
3. For the interval x > 5:
Let's pick x = 6. Then,

> 0
After simplifying, we get 13 > 0, which is ture.
Keep this interval.
Eighth, therefore, x <

and x > 5
Answer: x <

and x > 5
Answer:
C) $25 + $1.25
Step-by-step explanation:
1. 51 x .5 = 25.5
2. 25.5 x .05 = 1.275
25 + 1.25 ≈ 25.5 + 1.28
Answer:
1. X3, 15x - 10y = 80 15x - 7y = 51
-17y = 29
2. 8 = 1/60 + a. 8 - 1/60 = 7.98333333333
6 = 1/80 + b. 6 - 1/80 = 5.9875
13.9708333333
3. I genuinely dont know sorry.
4. Pencil = $0.05. Pen = $1.05
Step-by-step explanation:
Answer:
7) a = 65; b = 50
8) c = 125; d = 55; e = 52
9) f = 105
Step-by-step explanation:
7)
a = 65
b + 130 = 180
b = 50
8)
c = 125
d + 125 = 180
d = 55
e = 52
9)
(180 - f) + 32 + (180 - 107) = 180
180 - f + 32 + 180 - 107 = 180
-f + 285 = 180
-f = -105
f = 105
Answer:
variable is (<em> </em><em>x</em><em> </em><em>)</em>
<em>∆</em><em>product</em><em> </em><em>of</em><em> </em><em>8</em><em> </em><em>:</em>
<em>8</em><em> </em><em>x</em>
<em>∆</em><em>the</em><em> </em><em>number</em><em> </em><em>increase</em><em>d</em><em> </em><em>by</em><em> </em><em>2</em><em> </em><em>:</em><em> </em>
<em>8</em><em> </em><em>x</em><em> </em><em>+</em><em> </em><em>2</em>
<em>And</em><em> </em><em>we</em><em>'re</em><em> </em><em>done</em><em> </em><em>♥️</em>