Answer:
63.6g/mol
Explanation:
Use the equation of effusion:
47.8/24=
solve for x you get 63.6g/mol
Direct electron transfer from a a singlet reduced species to a triplet oxidizing species is quantum-mechanically forbidden.
<h3><u>Transfer from singlet to triplet:</u></h3>
- Either an excited singlet state or an excited triplet state will occur when an electron in a molecule with a singlet ground state is stimulated (through radiation absorption) to a higher energy level.
- All electron spins in a molecule electronic state known as a singlet are coupled.
- In other words, the ground state electron and the stimulated electron's spin are still coupled (a pair of electrons in the same energy level must have opposite spins, per the Pauli exclusion principle).
- The excited electron and ground state electron are parallel in a triplet state because they are no longer coupled (same spin).
- It is less likely that a triplet state would arise when the molecule absorbs radiation since excitation to a triplet state necessitates an additional "forbidden" spin transfer.
To view more questions on quantum mechanism, refer to:
brainly.com/question/13639384
#SPJ4
Answer:
b. It should be dumped in a beaker labeled "waste copper" on one's bench during the experiment.
d. It should be disposed of in the bottle for waste copper ion when work is completed.
Explanation:
Solutions containing copper ion should never be disposed of by dumping them in a sink or in common trash cans, because this will cause pollution in rivers, lakes and seas, being a contaminating agent to both human beings and animals. They should be placed in appropriate compatible containers that can be hermetically sealed. The sealed containers must be labeled with the name and class of hazardous substance they contain and the date they were generated.
It never should be returned to the bottle containing the solution, since it can contaminate the solution of the bottle.
In the Solutions and Spectroscopy experiments there is always wastes.
Answer:
through Decantation
Explanation:
Decantation: Decantation is pouring out of upper clear layer of liquid into another container to separate two immiscible liquids or to separate different substances in a suspension mixture.
Therefore, we could use decantation once the sand particles settle down by gently pouring the water into another container. Once the water is transfered, we'll be left with sand in the bottom of the first container.
Hope that helps...