Answer:
order of increasing relative atomic mass
The initial temperature is 137.34 °C.
<u>Explanation:</u>
As the specific heat formula says that the heat energy required is directly proportional to the mass and change in temperature of the system.
Q = mcΔT
So, here the mass m is given as 23 kg, the specific heat of steel is given as c = 490 J/kg°C and the initial temperature is required to find with the final temperature being 140 °C. Also the heat energy required is 30,000 J.
ΔT =
ΔT =
Since the difference in temperature is 2.66, then the initial temperature will be
Final temperature - Initial temperature = Change in temperature
140-Initial temperature = 2.66
Initial temperature = 140-2.66 = 137.34 °C
Thus, the initial temperature is 137.34 °C.
GG | Gg
-----------
Gg | gg
Hello!
The half-life is the time of half-disintegration, it is the time in which half of the atoms of an isotope disintegrate.
We have the following data:
mo (initial mass) = 20 g
m (final mass after time T) = 5 g
x (number of periods elapsed) = ?
P (Half-life) = ? (in minutes)
T (Elapsed time for sample reduction) = 8 minutes
Let's find the number of periods elapsed (x), let us see:






Now, let's find the half-life (P) of the radioactive sample, let's see:





I Hope this helps, greetings ... DexteR! =)
Halogens (atoms with 7 valence electrons) and Hydrogen
or generally, atoms with their shells almost full