1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andreyandreev [35.5K]
3 years ago
9

What is the missing constant term in the perfect square that starts with x^2+2x

Mathematics
2 answers:
Helen [10]3 years ago
5 0

Answer:  The correct answer is:  " 1 " .

_____________________________________________________

                               →   "  x²  +  2x  +  <u>  1  </u>   =   (x + 1)²  " .

_____________________________________________________

_____________________________________________________

Step-by-step explanation:

_____________________________________________________

Let us assume that the question asks us to solve for the "missing constant term in the following equation:  

      →   " x² + 2x + b = 0 " ;  

      →  in which:  " b " is the "missing constant term" for which we shall solve.

_____________________________________________________

The form of an equation in the perfect square would be:

                →  (x + b) ² =  x² + 2bx + b²  ;

                →  In our case, "b" ; refer to the "missing constant term" for which we shall solve.

_____________________________________________________

      →   " x² + 2x + b = 0 " ;  

       Note that the term in the equation with the highest degree (highest exponent) is:  

            →  " x² " ;  with an "implied coefficient" of: " 1 " (one) ;

      →   {since "any value" , multiplied by " 1 " , results in that same initial value.}.

      →   Since the term with the highest degree has a "co-efficient" of " 1 " ;

  we can solve the problem;   i.e. "Solve for "b" ;  accordingly:

_____________________________________________________

      →   " x² + 2x + b = 0 " ;

Subtract "b" from each side of the equation:

      →   " x² + 2x + b - b = 0 - b " ;

      →  to get:

      →   x² + 2x  =  - b

Now we want to complete x² + 2x into a perfect square.

To do so, we take the:  "2" (from the:  "+2x" );  

     →  and we divide that value {in our case, "2"};  by "2" ;

to get:  "[2/2]" ;  and then we "square" that value;

     →  to get:  " [2/2]² " .

_____________________________________________________

Now, we add this "squared value" to:  " x² + 2x " ;  as follows:

     →  " x² + 2x + [2/2]² " ;  and simply:  " [2/2]² = [1]² = 1 ."

_____________________________________________________

     x² + 2x + (2/2)² = x² + 2x + 1 ;

                              =  (x + 1)² ;

_____________________________________________________

Now:  " x² + 2x = - b " ;

 We add "(2/2)² " ;  to each side of the equation;

 →  In our case,  " [2/2]² = [1]² = 1 " ;

 →  As such, we add:  " 1 " ;  to each side of the equation:

              →   x² + 2x + (2/2)² =  - b + (2/2)² ;

              →  Rewrite;  substituting " 1 " [for:  " (2/2)² "] :

              →   x² + 2x + 1  =  1 - b ;                                          

              →   x² + 2x + 1   = 1 - b ;

_____________________________________________________

And assume "b" would equal "1" ;

 since assuming the question refers to the equation:

     "x²  +  2x  ±   b = 0 " ;  solve for "b" ;  

And:   "b = 1 " ;

Then:  " x² + 2x + 1 = ?  1 - b  ??

       →  then:   " 1 - b = 0 "  ;  Solve for "b" ;

       →  Add "b" to each side of the equation:

                      " 1 - b + b = 0 + b " ;

       →  to get:  " 1 = b "  ;   ↔ " b =  1 "  ;  Yes!

___________________________________________________

Also, to check our work:

_____________________________________________________

Remember, from above:

_____________________________________________________  

" The form of an equation in the perfect square would be:

                →  (x + b)²  =  x²  +  2bx + b² " ;  _____________________________________________________

   →  Let us substitute "1" for all values of "b" :

                  →   "  (x + 1) ²  =   x² + 2*(b)*(1)  +   1²  "  ;

                  →   "  (x + 1)²   =   x²  +  (2*1*1)   +  (1*1) "  ;

                  →   "  (x + 1)²   = ?  x²  +  2  +  1 "  ?? ;  Yes!

                  →  However, let us check for sure!

 _____________________________________________________

→   Expand:  " (x + 1)²  " ;  

→  " (x + 1)² = (x + 1)(x + 1) " ;

_____________________________________________________

   →  " (x + 1)(x + 1) " ;  

_____________________________________________________

Note the following property of multiplication:

_____________________________________________________

 →   " (a + b)(c + d)  =  ac  +  ad  +  bc  +  bd " ;

_____________________________________________________

As such:

_____________________________________________________

         →  " (x + 1)(x + 1) " ;

              =  (x*x) + (1x) + (1x) + (1*1) ;

              =  x²  +  1x + 1x + 1 ;

        →  Combine the "like terms" :

              + 1x + 1x = + 2x ;  

And rewrite:

              =   x²  +  2x + 1 .

_____________________________________________________

"  (x + 1)²   = ?  x²  +  2  +  1 "  ?? ;  Yes!

_____________________________________________________

    →   So:  The answer is:  " 1 " .

_____________________________________________________

   →  " x² + 2x + <u>  1  </u>  =  (x + 1)²  " .

_____________________________________________________

Hope this answer helped!

    Best wishes to you in your academic endeavors

            — and within the "Brainly" community!

_____________________________________________________

DENIUS [597]3 years ago
3 0

Answer:

  1

Step-by-step explanation:

The constant term in a perfect square trinomial with leading coefficient 1 is the square of half the coefficient of the linear term.

  (2/2)² = 1

The missing constant term is 1.

You might be interested in
Look at this graph:
-Dominant- [34]

Answer:

3/2

Step-by-step explanation:

slope=rise/run=30/20=3/2.

8 0
3 years ago
Poison Ivy had $17.34 in her account. She wrote a check for $24.86. What will her account balance be when the check is cashed? F
Ierofanga [76]

Answer:

it would be negative you subrtract not add , the answer is -7.52

Step-by-step explanation:

5 0
3 years ago
What is 9/12 simplified? Thanks
Pani-rosa [81]
\frac{9:3}{12:3} =  \frac{3}{4}
6 0
3 years ago
Read 2 more answers
A translation 2 units to the right and 10 units up. Then a reflection over the line AC
Artyom0805 [142]
80 is the correct answer
6 0
3 years ago
CB = 4, CA = 11 , and CE = 8 , what is the length of overline ET ?
erma4kov [3.2K]
  • AB=11-4=7

\\ \rm\hookrightarrow \dfrac{BC}{AB}=\dfrac{CE}{ET}

  • ET be x

\\ \rm\hookrightarrow \dfrac{4}{7}=\dfrac{8}{x}

\\ \rm\hookrightarrow 4x=56

\\ \rm\hookrightarrow ET=x=14

8 0
2 years ago
Other questions:
  • susan is making 8 casseroles. she uses 9 cans of beans. Each can is 16-ounces. Of she divides the beans equally among 8 casserol
    12·2 answers
  • The sum of 7 and x is -10
    11·2 answers
  • Need help please I’m very bad at math
    5·1 answer
  • Drag each equation to the correct location on the table.
    13·1 answer
  • What is the area of rhombus ABCD ? Enter your answer in the box. Do not round at any steps. units² Rhombus A B C D on a coordina
    10·1 answer
  • The floor of the entryway to an office building will be triangular. Two angles of the triangle will measure 40º, and the side be
    9·1 answer
  • Use the story graph of each problem to fill in the blanks of the following sentence frames below.
    5·1 answer
  • Solve:<br><br> a<br> no solution<br> b<br> infinitely many solutions
    15·1 answer
  • A car used 1/32 of a gallon of gas to drive ¼ of a mile. At this rate, how many miles can the car travel using 1 gallon of gas?
    6·2 answers
  • 11 3/8 + 2 1/2<br><br><br> pleaseee help its missing
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!