1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andreyandreev [35.5K]
3 years ago
9

What is the missing constant term in the perfect square that starts with x^2+2x

Mathematics
2 answers:
Helen [10]3 years ago
5 0

Answer:  The correct answer is:  " 1 " .

_____________________________________________________

                               →   "  x²  +  2x  +  <u>  1  </u>   =   (x + 1)²  " .

_____________________________________________________

_____________________________________________________

Step-by-step explanation:

_____________________________________________________

Let us assume that the question asks us to solve for the "missing constant term in the following equation:  

      →   " x² + 2x + b = 0 " ;  

      →  in which:  " b " is the "missing constant term" for which we shall solve.

_____________________________________________________

The form of an equation in the perfect square would be:

                →  (x + b) ² =  x² + 2bx + b²  ;

                →  In our case, "b" ; refer to the "missing constant term" for which we shall solve.

_____________________________________________________

      →   " x² + 2x + b = 0 " ;  

       Note that the term in the equation with the highest degree (highest exponent) is:  

            →  " x² " ;  with an "implied coefficient" of: " 1 " (one) ;

      →   {since "any value" , multiplied by " 1 " , results in that same initial value.}.

      →   Since the term with the highest degree has a "co-efficient" of " 1 " ;

  we can solve the problem;   i.e. "Solve for "b" ;  accordingly:

_____________________________________________________

      →   " x² + 2x + b = 0 " ;

Subtract "b" from each side of the equation:

      →   " x² + 2x + b - b = 0 - b " ;

      →  to get:

      →   x² + 2x  =  - b

Now we want to complete x² + 2x into a perfect square.

To do so, we take the:  "2" (from the:  "+2x" );  

     →  and we divide that value {in our case, "2"};  by "2" ;

to get:  "[2/2]" ;  and then we "square" that value;

     →  to get:  " [2/2]² " .

_____________________________________________________

Now, we add this "squared value" to:  " x² + 2x " ;  as follows:

     →  " x² + 2x + [2/2]² " ;  and simply:  " [2/2]² = [1]² = 1 ."

_____________________________________________________

     x² + 2x + (2/2)² = x² + 2x + 1 ;

                              =  (x + 1)² ;

_____________________________________________________

Now:  " x² + 2x = - b " ;

 We add "(2/2)² " ;  to each side of the equation;

 →  In our case,  " [2/2]² = [1]² = 1 " ;

 →  As such, we add:  " 1 " ;  to each side of the equation:

              →   x² + 2x + (2/2)² =  - b + (2/2)² ;

              →  Rewrite;  substituting " 1 " [for:  " (2/2)² "] :

              →   x² + 2x + 1  =  1 - b ;                                          

              →   x² + 2x + 1   = 1 - b ;

_____________________________________________________

And assume "b" would equal "1" ;

 since assuming the question refers to the equation:

     "x²  +  2x  ±   b = 0 " ;  solve for "b" ;  

And:   "b = 1 " ;

Then:  " x² + 2x + 1 = ?  1 - b  ??

       →  then:   " 1 - b = 0 "  ;  Solve for "b" ;

       →  Add "b" to each side of the equation:

                      " 1 - b + b = 0 + b " ;

       →  to get:  " 1 = b "  ;   ↔ " b =  1 "  ;  Yes!

___________________________________________________

Also, to check our work:

_____________________________________________________

Remember, from above:

_____________________________________________________  

" The form of an equation in the perfect square would be:

                →  (x + b)²  =  x²  +  2bx + b² " ;  _____________________________________________________

   →  Let us substitute "1" for all values of "b" :

                  →   "  (x + 1) ²  =   x² + 2*(b)*(1)  +   1²  "  ;

                  →   "  (x + 1)²   =   x²  +  (2*1*1)   +  (1*1) "  ;

                  →   "  (x + 1)²   = ?  x²  +  2  +  1 "  ?? ;  Yes!

                  →  However, let us check for sure!

 _____________________________________________________

→   Expand:  " (x + 1)²  " ;  

→  " (x + 1)² = (x + 1)(x + 1) " ;

_____________________________________________________

   →  " (x + 1)(x + 1) " ;  

_____________________________________________________

Note the following property of multiplication:

_____________________________________________________

 →   " (a + b)(c + d)  =  ac  +  ad  +  bc  +  bd " ;

_____________________________________________________

As such:

_____________________________________________________

         →  " (x + 1)(x + 1) " ;

              =  (x*x) + (1x) + (1x) + (1*1) ;

              =  x²  +  1x + 1x + 1 ;

        →  Combine the "like terms" :

              + 1x + 1x = + 2x ;  

And rewrite:

              =   x²  +  2x + 1 .

_____________________________________________________

"  (x + 1)²   = ?  x²  +  2  +  1 "  ?? ;  Yes!

_____________________________________________________

    →   So:  The answer is:  " 1 " .

_____________________________________________________

   →  " x² + 2x + <u>  1  </u>  =  (x + 1)²  " .

_____________________________________________________

Hope this answer helped!

    Best wishes to you in your academic endeavors

            — and within the "Brainly" community!

_____________________________________________________

DENIUS [597]3 years ago
3 0

Answer:

  1

Step-by-step explanation:

The constant term in a perfect square trinomial with leading coefficient 1 is the square of half the coefficient of the linear term.

  (2/2)² = 1

The missing constant term is 1.

You might be interested in
In 2015, the median family income in the United States was $66,650. If the 90th percentile for the 2015 median four-person famil
Vsevolod [243]

Answer:

                           

Step-by-step explanation:

                 

6 0
3 years ago
Read 2 more answers
Tariq is comparing the prices of various packages of golf tees at a sporting goods store. He finds a package of 8 golf tees that
Alenkasestr [34]

Answer:

$0.25

Step-by-step explanation:

To find unit rate divide number of shirts by cost of package

$2.00/8 = $0.25

So each individual golf tee costs $0.25

3 0
3 years ago
Rewrite the equation y-3=2(x+4) into slope form
soldi70 [24.7K]

Answer:

Step-by-step explanation:

So we have y-3=2(x+4)

So the first thing we want to do is distribute the 2 in front of the (x+4)

2(x+4) = 2x+8

Which means we have:

y-3=2x+8

Remember we need to get it into the form y=mx+b

As you can see here the 3 is preventing our equation from being in that form to we need to add it to both sides. This leaves us with:

y - 3 + 3 = 2x+8+3

Which gives: y = 2x+11

Therefore the slope form of this equation is y = 2x+11

4 0
3 years ago
Write two equivalent fractions for 10 to 3
saw5 [17]
20/6 because 20 x 3 = 6 x 10 = 60. 309 is equivalent to 10/3 because 30 x 3 = 9 x 10 = 90.
40/12 is equivalent to 10/3 because 40 x 3 = 12 x 10 = 120.
7 0
3 years ago
Can anyone help me solve these please ?
Anton [14]

Answer:

dufenschmertz evil incorporated...

Step-by-step explanation:

after hours ;)

4 0
3 years ago
Other questions:
  • 7 x 10 to the 3rd power
    7·2 answers
  • The area of the rectangle is<br> square inches.
    7·1 answer
  • Diameter = 3 feet circumference =?
    9·2 answers
  • Aponi built a toy chess for her niece. it has a volume of 12 ft. The chest is 3 feet long and 2 feet wide. How deep is it
    9·1 answer
  • 5/8 divided by 9<br> help
    11·2 answers
  • What is –9 – (–13) and how do i solve
    8·2 answers
  • What is the rate in cups of lemon juice per cup of Greek yogurt ??
    14·1 answer
  • Write the equation of the line IN SLOPE INTERCEPT FORM, that goes through (-2,4) and (-3,2)
    13·1 answer
  • The sum of a whole number and twice the square of the number is 10. Find the number
    6·1 answer
  • An adult male cheetah runs at a speed of 26 mph. That is 30% faster than his average last month. How fast did the male cheetah r
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!