1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andreyandreev [35.5K]
3 years ago
9

What is the missing constant term in the perfect square that starts with x^2+2x

Mathematics
2 answers:
Helen [10]3 years ago
5 0

Answer:  The correct answer is:  " 1 " .

_____________________________________________________

                               →   "  x²  +  2x  +  <u>  1  </u>   =   (x + 1)²  " .

_____________________________________________________

_____________________________________________________

Step-by-step explanation:

_____________________________________________________

Let us assume that the question asks us to solve for the "missing constant term in the following equation:  

      →   " x² + 2x + b = 0 " ;  

      →  in which:  " b " is the "missing constant term" for which we shall solve.

_____________________________________________________

The form of an equation in the perfect square would be:

                →  (x + b) ² =  x² + 2bx + b²  ;

                →  In our case, "b" ; refer to the "missing constant term" for which we shall solve.

_____________________________________________________

      →   " x² + 2x + b = 0 " ;  

       Note that the term in the equation with the highest degree (highest exponent) is:  

            →  " x² " ;  with an "implied coefficient" of: " 1 " (one) ;

      →   {since "any value" , multiplied by " 1 " , results in that same initial value.}.

      →   Since the term with the highest degree has a "co-efficient" of " 1 " ;

  we can solve the problem;   i.e. "Solve for "b" ;  accordingly:

_____________________________________________________

      →   " x² + 2x + b = 0 " ;

Subtract "b" from each side of the equation:

      →   " x² + 2x + b - b = 0 - b " ;

      →  to get:

      →   x² + 2x  =  - b

Now we want to complete x² + 2x into a perfect square.

To do so, we take the:  "2" (from the:  "+2x" );  

     →  and we divide that value {in our case, "2"};  by "2" ;

to get:  "[2/2]" ;  and then we "square" that value;

     →  to get:  " [2/2]² " .

_____________________________________________________

Now, we add this "squared value" to:  " x² + 2x " ;  as follows:

     →  " x² + 2x + [2/2]² " ;  and simply:  " [2/2]² = [1]² = 1 ."

_____________________________________________________

     x² + 2x + (2/2)² = x² + 2x + 1 ;

                              =  (x + 1)² ;

_____________________________________________________

Now:  " x² + 2x = - b " ;

 We add "(2/2)² " ;  to each side of the equation;

 →  In our case,  " [2/2]² = [1]² = 1 " ;

 →  As such, we add:  " 1 " ;  to each side of the equation:

              →   x² + 2x + (2/2)² =  - b + (2/2)² ;

              →  Rewrite;  substituting " 1 " [for:  " (2/2)² "] :

              →   x² + 2x + 1  =  1 - b ;                                          

              →   x² + 2x + 1   = 1 - b ;

_____________________________________________________

And assume "b" would equal "1" ;

 since assuming the question refers to the equation:

     "x²  +  2x  ±   b = 0 " ;  solve for "b" ;  

And:   "b = 1 " ;

Then:  " x² + 2x + 1 = ?  1 - b  ??

       →  then:   " 1 - b = 0 "  ;  Solve for "b" ;

       →  Add "b" to each side of the equation:

                      " 1 - b + b = 0 + b " ;

       →  to get:  " 1 = b "  ;   ↔ " b =  1 "  ;  Yes!

___________________________________________________

Also, to check our work:

_____________________________________________________

Remember, from above:

_____________________________________________________  

" The form of an equation in the perfect square would be:

                →  (x + b)²  =  x²  +  2bx + b² " ;  _____________________________________________________

   →  Let us substitute "1" for all values of "b" :

                  →   "  (x + 1) ²  =   x² + 2*(b)*(1)  +   1²  "  ;

                  →   "  (x + 1)²   =   x²  +  (2*1*1)   +  (1*1) "  ;

                  →   "  (x + 1)²   = ?  x²  +  2  +  1 "  ?? ;  Yes!

                  →  However, let us check for sure!

 _____________________________________________________

→   Expand:  " (x + 1)²  " ;  

→  " (x + 1)² = (x + 1)(x + 1) " ;

_____________________________________________________

   →  " (x + 1)(x + 1) " ;  

_____________________________________________________

Note the following property of multiplication:

_____________________________________________________

 →   " (a + b)(c + d)  =  ac  +  ad  +  bc  +  bd " ;

_____________________________________________________

As such:

_____________________________________________________

         →  " (x + 1)(x + 1) " ;

              =  (x*x) + (1x) + (1x) + (1*1) ;

              =  x²  +  1x + 1x + 1 ;

        →  Combine the "like terms" :

              + 1x + 1x = + 2x ;  

And rewrite:

              =   x²  +  2x + 1 .

_____________________________________________________

"  (x + 1)²   = ?  x²  +  2  +  1 "  ?? ;  Yes!

_____________________________________________________

    →   So:  The answer is:  " 1 " .

_____________________________________________________

   →  " x² + 2x + <u>  1  </u>  =  (x + 1)²  " .

_____________________________________________________

Hope this answer helped!

    Best wishes to you in your academic endeavors

            — and within the "Brainly" community!

_____________________________________________________

DENIUS [597]3 years ago
3 0

Answer:

  1

Step-by-step explanation:

The constant term in a perfect square trinomial with leading coefficient 1 is the square of half the coefficient of the linear term.

  (2/2)² = 1

The missing constant term is 1.

You might be interested in
Manu picked 10 apples, and then Sten gave him 10 more. Manu gave 5 of the apples to Klara. How many
Masteriza [31]

Answer:

15

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
E=mc? what goes after c
Jet001 [13]
C: is the speed of light (3*10^8 m/s) and it is squared (raised to the power 2) in this equation.
3 0
3 years ago
Read 2 more answers
Mrs rodriguez needs you to calculate the AREA of a circular pool with radius of 5 meters to help her figure out if it will fit i
Mila [183]
The formula for an area of a circle is A= pi(r)^2
so if you plug in 5 to r (because it’s the radius) you should get A= 78.5
3 0
3 years ago
Emma kept track of the number of puzzles solved during the past 10 days. She realized that she didn't solve any puzzles in the l
AveGali [126]
I think the answer is 13
6 0
3 years ago
How do i find this? HELP!
dezoksy [38]

Answer:

x= 11.66667

Step-by-step explanation:

ok the six is repeating but, basically multiply 5 times 7, then divide that by 3

4 0
3 years ago
Other questions:
  • PLS HELP
    8·1 answer
  • Can u help with these questions please
    15·1 answer
  • What is the absolute value of the number indicated on the number line below?
    13·1 answer
  • Simplify <br> squared 24x^5 y6
    15·2 answers
  • The water tank in the diagram is in the shape of an inverted right circular cone. The radius of its base is 16 feet, and its hei
    11·2 answers
  • Rewrite the Fraction 94/5 as a decimal
    9·2 answers
  • 4/7 divided by 7/2?????
    13·2 answers
  • At the end of the first round in a quiz show Jeremy has at most -20 point write an inequality that means at most -20
    11·1 answer
  • Key<br> X<br> = -X<br> = 1 = -1<br> Which equation could represent the model?
    12·1 answer
  • Solve for x : 13x + 7 = -227
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!