1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andreyandreev [35.5K]
3 years ago
9

What is the missing constant term in the perfect square that starts with x^2+2x

Mathematics
2 answers:
Helen [10]3 years ago
5 0

Answer:  The correct answer is:  " 1 " .

_____________________________________________________

                               →   "  x²  +  2x  +  <u>  1  </u>   =   (x + 1)²  " .

_____________________________________________________

_____________________________________________________

Step-by-step explanation:

_____________________________________________________

Let us assume that the question asks us to solve for the "missing constant term in the following equation:  

      →   " x² + 2x + b = 0 " ;  

      →  in which:  " b " is the "missing constant term" for which we shall solve.

_____________________________________________________

The form of an equation in the perfect square would be:

                →  (x + b) ² =  x² + 2bx + b²  ;

                →  In our case, "b" ; refer to the "missing constant term" for which we shall solve.

_____________________________________________________

      →   " x² + 2x + b = 0 " ;  

       Note that the term in the equation with the highest degree (highest exponent) is:  

            →  " x² " ;  with an "implied coefficient" of: " 1 " (one) ;

      →   {since "any value" , multiplied by " 1 " , results in that same initial value.}.

      →   Since the term with the highest degree has a "co-efficient" of " 1 " ;

  we can solve the problem;   i.e. "Solve for "b" ;  accordingly:

_____________________________________________________

      →   " x² + 2x + b = 0 " ;

Subtract "b" from each side of the equation:

      →   " x² + 2x + b - b = 0 - b " ;

      →  to get:

      →   x² + 2x  =  - b

Now we want to complete x² + 2x into a perfect square.

To do so, we take the:  "2" (from the:  "+2x" );  

     →  and we divide that value {in our case, "2"};  by "2" ;

to get:  "[2/2]" ;  and then we "square" that value;

     →  to get:  " [2/2]² " .

_____________________________________________________

Now, we add this "squared value" to:  " x² + 2x " ;  as follows:

     →  " x² + 2x + [2/2]² " ;  and simply:  " [2/2]² = [1]² = 1 ."

_____________________________________________________

     x² + 2x + (2/2)² = x² + 2x + 1 ;

                              =  (x + 1)² ;

_____________________________________________________

Now:  " x² + 2x = - b " ;

 We add "(2/2)² " ;  to each side of the equation;

 →  In our case,  " [2/2]² = [1]² = 1 " ;

 →  As such, we add:  " 1 " ;  to each side of the equation:

              →   x² + 2x + (2/2)² =  - b + (2/2)² ;

              →  Rewrite;  substituting " 1 " [for:  " (2/2)² "] :

              →   x² + 2x + 1  =  1 - b ;                                          

              →   x² + 2x + 1   = 1 - b ;

_____________________________________________________

And assume "b" would equal "1" ;

 since assuming the question refers to the equation:

     "x²  +  2x  ±   b = 0 " ;  solve for "b" ;  

And:   "b = 1 " ;

Then:  " x² + 2x + 1 = ?  1 - b  ??

       →  then:   " 1 - b = 0 "  ;  Solve for "b" ;

       →  Add "b" to each side of the equation:

                      " 1 - b + b = 0 + b " ;

       →  to get:  " 1 = b "  ;   ↔ " b =  1 "  ;  Yes!

___________________________________________________

Also, to check our work:

_____________________________________________________

Remember, from above:

_____________________________________________________  

" The form of an equation in the perfect square would be:

                →  (x + b)²  =  x²  +  2bx + b² " ;  _____________________________________________________

   →  Let us substitute "1" for all values of "b" :

                  →   "  (x + 1) ²  =   x² + 2*(b)*(1)  +   1²  "  ;

                  →   "  (x + 1)²   =   x²  +  (2*1*1)   +  (1*1) "  ;

                  →   "  (x + 1)²   = ?  x²  +  2  +  1 "  ?? ;  Yes!

                  →  However, let us check for sure!

 _____________________________________________________

→   Expand:  " (x + 1)²  " ;  

→  " (x + 1)² = (x + 1)(x + 1) " ;

_____________________________________________________

   →  " (x + 1)(x + 1) " ;  

_____________________________________________________

Note the following property of multiplication:

_____________________________________________________

 →   " (a + b)(c + d)  =  ac  +  ad  +  bc  +  bd " ;

_____________________________________________________

As such:

_____________________________________________________

         →  " (x + 1)(x + 1) " ;

              =  (x*x) + (1x) + (1x) + (1*1) ;

              =  x²  +  1x + 1x + 1 ;

        →  Combine the "like terms" :

              + 1x + 1x = + 2x ;  

And rewrite:

              =   x²  +  2x + 1 .

_____________________________________________________

"  (x + 1)²   = ?  x²  +  2  +  1 "  ?? ;  Yes!

_____________________________________________________

    →   So:  The answer is:  " 1 " .

_____________________________________________________

   →  " x² + 2x + <u>  1  </u>  =  (x + 1)²  " .

_____________________________________________________

Hope this answer helped!

    Best wishes to you in your academic endeavors

            — and within the "Brainly" community!

_____________________________________________________

DENIUS [597]3 years ago
3 0

Answer:

  1

Step-by-step explanation:

The constant term in a perfect square trinomial with leading coefficient 1 is the square of half the coefficient of the linear term.

  (2/2)² = 1

The missing constant term is 1.

You might be interested in
18.88 divided by 1.6
dybincka [34]
18.88 divided by 1.6 is 11.8.
3 0
4 years ago
Read 2 more answers
20 Point!
ludmilkaskok [199]

determinant: \sqrt{b^2-4ac}

(a) x^2+4x+5=0\\D=4^2-4\cdot1\cdot5={-4}\\D

D<0 means there are no real roots. there are two complex roots with imaginary components.

(b) D=16+20=36>0

D>0 means there are two real roots

(c) D = 20^2-4*4*25 = 0

D=0 means there is one real root with multiplicity 2


7 0
3 years ago
Find the unknown length of the right triangle. If necessary approximate the length to the nearest thousandth
WARRIOR [948]

We are given a right triangle and we are asked to determine the hypotenuse given the measure of its sides. To do that we will use the Pythagorean theorem:

h^2=(10km)^2+(20km)^2

Now, we solve the square:

h^2=100km^2+400km^2

Now, we add the values:

h^2=500km^2

Now, we take the square root to both sides:

h=\sqrt[]{500km^2}

Solving the operations:

h=22.361km

Therefore, the length of the hypotenuse is 22.361 kilometers.

6 0
1 year ago
0.2(10-5c)=5c-16 halp
iogann1982 [59]

Answer:

c= 3

Step-by-step explanation:

0.2(10 -5c)= 5c -16

<em>Expand</em><em>:</em>

0.2(10) +0.2(-5c)= 5c -16

2 -c= 5c -16

<em>Bring</em><em> </em><em>all</em><em> </em><em>c</em><em> </em><em>terms</em><em> </em><em>to</em><em> </em><em>1</em><em> </em><em>side</em><em>,</em><em> </em><em>constant</em><em> </em><em>to</em><em> </em><em>the</em><em> </em><em>other</em><em>:</em>

5c +c= 2 +16

<em>Simplify</em><em>:</em>

6c= 18

<em>Divide</em><em> </em><em>by</em><em> </em><em>6</em><em> </em><em>on</em><em> </em><em>both</em><em> </em><em>sides</em><em>:</em>

c= 18 ÷6

c= 3

5 0
3 years ago
Read 2 more answers
For Exercises 19-24, a, b, c, and d are distinct lines in the same plane. For each combination of relationships, tell how a and
Olegator [25]

Answer:

a is parallel to d

a and d are parallel, and are perpendicular to c and d (those are parallel to each other)

RESULT

They are parallel

Step-by-step explanation:

5 0
3 years ago
Other questions:
  • How many ways are there to choose a committee of 3 people from a group of 5 people? A. 10 B. 12 C. 60 D. 70
    11·1 answer
  • Whats my grade if I got 126 answers right of 200?
    6·2 answers
  • If an item is marked up 15% and the new cost is 155.25 what was the original price
    13·1 answer
  • What place value is held by 3 in the number: 137,156
    7·1 answer
  • What strategy is (5 x 200) plus (5 x 16)
    11·1 answer
  • Can someone help me with numbers 18 and 20? thank you!
    15·1 answer
  • In a certain quiz that consists of 10 questions, each question after the first is worth 4 points more than the preceding questio
    10·1 answer
  • Is -2x-6=2x+6 no soulution
    14·2 answers
  • If the graph of the second equation in the system passes through the points (-12,20) and (4,12), which statement is true?
    13·1 answer
  • 1
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!