A resistor is a passive two-terminal electrical component that implements electrical resistance as a circuit element. In electronic circuits, resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias active elements, and terminate transmission lines, among other uses. High-power resistors that can dissipate many watts of electrical power as heat, may be used as part of motor controls, in power distribution systems, or as test loads for generators. Fixed resistors have resistances that only change slightly with temperature, time or operating voltage. Variable resistors can be used to adjust circuit elements (such as a volume control or a lamp dimmer), or as sensing devices for heat, light, humidity, force, or chemical
Answer:
the helis speed increased its speed by 35 m/s. Unless you are asking me what was the speed per second. if you were asking me for the speed per second then that would be a different answer
Explanation:
Answer:
True
Explanation:
The tensile stress, σ, on a solid cylindrical wire is given by the following relationship;

Where;
= The tensile force
= The original cross sectional area of the cylindrical wire = π·R²
R = The radius of the wire
Therefore;
= σ ×
= σ × π × R²
Therefore, the tensile force is directly proportional to the square of the radius of the cylindrical wire, and as the radius of the wire increases, which is by increasing the thickness of the wire, the tensile force is largely increased
The correct option is; True.
Complete Question
The diagram of with this question is shown on the first uploaded image
Answer:
The value is 
Explanation:
From the question we are told that
The mass of the rock is 
The length of the string is 
The angle the string makes horizontal is 
The angle which the projection of the string onto the xy -plane makes with the positive x-axis is 
The angular velocity of the rock is 
Generally the radius of the circle made by the length of the string is mathematically represented as

=> 
=> 
Generally the resultant tangential velocity is mathematically represented as

=> 
=> 
Generally the tangential velocity along the x-axis is

=> 
=> 
The negative sign show that the velocity is directed toward the negative x-axis
Generally the tangential velocity along the y-axis is

=> 
=> 
Generally the tangential velocity along the y-axis is

=> 
Generally the tangential velocity at that instant is mathematically represented as
