Answer:
5.5 x 10^5 N/C
Explanation:
t = 0.001 s
Δp = - 8.8 x 10^-17 kg m /s
Force is equal to the rate of change of momentum.
F = Δp / Δt
F = (8.8 x 10^-17) / 0.001 = 8.8 x 10^-14 N
q = 1.6 x 10^-19 C
Electric field, E = F / q = (8.8 x 10^-14) / (1.6 x 10^-19)
E = 5.5 x 10^5 N/C
-- If the object is moving with speed of 10.954 meters per second, then
it has 300J of kinetic energy no matter where it may be located.
-- If the object is 6.118 meters above somewhere, then it has 300J of
gravitational potential energy relative to that place.
Answer:
a) 20 seconds
b) No.
Explanation:
t = Time taken for jet to stop
u = Initial velocity = 100 m/s (given in the question)
v = Final velocity = 0 (because the jet will stop at the end)
s = Displacement of the jet (Distance between the moment the jet touches the ground to the point the point it stops)
a = Acceleration = -5.00 m/s² (slowing down, so it is negative)
a) Equation of motion

The time required for the plane to slow down from the moment it touches the ground is 20 seconds.

The distance it requires for the jet to stop is 1000 m so in a small tropical island airport where the runway is 0.800 km long the plane would not be able to land. The runway needs to be atleast 1000 m long here the runway on the island is 1000-800 = 200 m short.
Answer:
T= 4.24sec
Explanation:
We are going to use the formula below to calculate.

Where T is period
L is length of rod
g is acceleration due to gravity =
From the problem, the rod is pivoted at 1/4L which means that three quarter of the rod was used for the oscillation. lets call this

= 4.4625m
thus
T= 4.24sec
<span>Light can travel in a vacuum, and ... strange as it may seem ...
its speed is always the same, even if the light source is moving. </span>