Answer:
21.28 m
Explanation:
height, h = 71 m
velocity of raft, v = 5.6 m/s
let the time taken by the stone to reach to raft is t.
use second equation of motion for stone

u = 0 m/s, h = 71 m, g = 9.8 m/s^2
71 = 0 + 0.5 x 9.8 x t^2
t = 3.8 s
Horizontal distance traveled by the raft in time t
d = v x t = 5.6 x 3.8 = 21.28 m
Answer:
The the analysis for the free fall part should be done under the constant acceleration.
Explanation:
In the given problem, the jumper is falling under the free fall. Since, no external force is acting on the body therefore, the fall will be under the action gravity only. also, the acceleration due to gravity is always constant.
Therefore, the the analysis for the free fall part should be done under the constant acceleration.
Answer:
h = 90.10 m
Explanation:
Given that,
A man is standing near the edge of a cliff 85 meters high, h₀ = 85 m
The initial speed of the stone, u = 10 m/s
The path followed by the projectile is given by :
....(1)
For maximum height,
Put dh/dt = 0
So,

Put the value of t in equation (1).

So, the maximum height of the stone is equal to 90.10 m.
Both waves would increase right? That seems correct since the water and air temp both equally changed.
Work = (force) x (distance)
The worker does (40N) x (4m) = 160 joules of work.
Friction eats up (27N) x (4m) = 108 joules of that energy,
generating 108 joules of heat.
The remaining (160J - 108J) = 52 joules of energy moves the box.