The equation for work (W) done by an electric field is:
W = qΔV
where q is the magnitude of the charge and ΔV is the potential difference. The question gives you W and q, so plug n' play to find ΔV:
10 = 2ΔV
ΔV = 5
If you search that click the first link ;)
We know, F = 1/4πε * q₁q₂ / r²
Here, q₁ = 5 * 10⁻⁶ C
q₂ = 2 * 10⁻⁶ C
r = 3 * 10⁻² m west
Substitute their values,
F = (9 * 10⁹) (5 * 10⁻⁶) (2 * 10⁻⁶) / (3 * 10⁻²)²
F = 100 N [ East of positive charge ]
Hope this helps!
Answer:
The time of motion is 0.64 s.
Explanation:
Given;
mass of the apple, m = 107 g
height of fall, h = 2 m
The velocity of the apple when it hits the ground is calculated from the law of conservation of energy;

The time of motion is calculated;
v = u + gt
6.261 = 0 + 9.8t
6.261 = 9.8t
t = 6.261 / 9.8
t = 0.64 s
Therefore, the time of motion is 0.64 s