Answer: 20 kgm/s
Explanation:
Given that M1 = M2 = 10kg
V1 = 5 m/s , V2 = 3 m/s
Since momentum is a vector quantity, the direction of the two object will be taken into consideration.
The magnitude of their combined
momentum before the crash will be:
M1V1 - M2V2
Substitute all the parameters into the formula
10 × 5 - 10 × 3
50 - 30
20 kgm/s
Therefore, the magnitude of their combined momentum before the crash will be 20 kgm/s
Answer:
and
Explanation:
Given:
- first charge,
- second charge,
- position of first charge,
- position of second charge,
Now since there are only 2 charges and of the same sign so they repel each other. This repulsion will be zero at some point on the line joining the charges.
<u>Now, according to the condition, electric field will be zero where the effects of field due to both the charges is equal.</u>
- since first charge is greater than the second charge so we may get a point to the right of the second charge and the distance between the two charges is 1 meter.
Since we have assumed that the we may get a point to the right of second charge so we calculate with respect to the origin.
and
Acceleration is the rate of change of the velocity of an object that is moving. This value is a result of all the forces that is acting on an object which is described by Newton's second law of motion. To determine acceleration, we need to know the initial velocity and the final velocity and the time elapsed. From the given values, we need t o calculate for the initial velocity. We use some kinematic equations. We do as follows:
x = v0t + at^2/2
60 = v0(6) + a(6)^2/2
60 = 6v0 + 18a (EQUATION 1)
vf = v0 + at
15 = v0 + a(6)
15 = v0 + 6a (EQUATION 2)
Solving for v0 and a,
v0 = 5 m/s
a = 1.7 m/s^2
Answer:
The hottest temperature is
Explanation:
From the question we are given
Generally converting to Fahrenheit
=>
=>
Converting to Fahrenheit
=>
=>
Now comparing the temperature in Fahrenheit we see that is the hottest
Because the number of valence electrons of an element determines the properties and in particular the reactivity of that element.
In fact, elements of the first group (i.e. only one valence electron) have high reactivity, because they can easily give away their valence electron to atoms of other elements forming bonds. On the contrary, elements of the 8th group (noble gases) have their outermost shell completely filled with electrons, so they do not have valence electrons, and they have little or no reactivity at all.