Yes..............................
The correct answers are:
B. plant growth;
C. animal actions;
The mechanical weathering is a type of weathering where physical force is included into the breaking up of the rocks. The plants and the animals are both causing this type of weathering with their actions. The plants can cause mechanical weathering with their roots, as they grow and surround a rock, they are able to create such a pressure that they can break the rock apart. Also, as their trunks are getting bigger, if there's rocks right next to them, the pressure from the growing of the trunk will crack the rocks. The animals are able to move the rocks, as well as pushing them, or even deliberately throwing them, so they manage to break up parts of them and cause mechanical weathering.
Answer:
4.5 x 10¹⁴ Hz
666.7 nm
1.8 x 10⁵ J
The color of the emitted light is red
Explanation:
E = energy of photons of light = 2.961 x 10⁻¹⁹ J
f = frequency of the photon
Energy of photons is given as
E = h f
2.961 x 10⁻¹⁹ = (6.63 x 10⁻³⁴) f
f = 4.5 x 10¹⁴ Hz
c = speed of light = 3 x 10⁸ m/s
λ = wavelength of photon
Using the equation
c = f λ
3 x 10⁸ = (4.5 x 10¹⁴) λ
λ = 0.6667 x 10⁻⁶ m
λ = 666.7 x 10⁻⁹ m
λ = 666.7 nm
n = number of photons in 1 mole = 6.023 x 10²³
U = energy of 1 mole of photons
Energy of 1 mole of photons is given as
U = n E
U = (6.023 x 10²³) (2.961 x 10⁻¹⁹)
U = 1.8 x 10⁵ J
The color of the emitted light is red
Answer:
18 ohms
Explanation:
V = I(R1 + R2)
5V = (0.167A)(12 ohms + R2)
Solving for R2
R2 = 18 ohms
Complete question:
Two parallel 3.0-meter long wires conduct current. The current in the top wire is 12.5 A and flows to the right. The top wire feels a repulsive force of 2.4 x 10^-4 N created by the interaction of the 12.5 A current and the magnetic field created by the bottom current (I). Find the magnitude and direction of the bottom current, if the distance between the two wires is 40cm.
Answer:
The bottom current is 12.8 A to the right.
Explanation:
Given;
length of the wires, L = 3.0 m
current in the top wire, I₁ = 12.5 A
repulsive force between the two wires, F = 2.4 x 10⁻⁴ N
distance between the two wires, r = 40 cm = 0.4 m
The repulsive force between the two wires is given by;

Where;
I₂ is the bottom current
The direction of the bottom current must be in the same direction as the top current since the force between the two wires is repulsive.

Therefore, the bottom current is 12.8 A to the right.