D is the best answer. In many physics problems we treat an extended object as if it were a point with the same mass located at the center of mass.
Answer:
Assessment zone
Explanation:
It is the assessment zone in various security zones where active and passive security measures are employed to identify, detect, classify and analyze possible threats inside the assessment zones.
Answer:
Power_input = 85.71 [W]
Explanation:
To be able to solve this problem we must first find the work done. Work is defined as the product of force by distance.
where:
W = work [J] (units of Joules)
F = force [N] (units of Newton)
d = distance [m]
We need to bear in mind that the force can be calculated by multiplying the mass by the gravity acceleration.
Now replacing:
Power is defined as the work done over a certain time. In this way by means of the following formula, we can calculate the required power.
where:
P = power [W] (units of watts)
W = work [J]
t = time = 40 [s]
The calculated power is the required power. Now as we have the efficiency of the machine, we can calculate the power that is introduced, to be able to do that work.
Answer:
D newton
Explanation:
he did extensive research on gravity, and gravity is what holds planets in orbits.
<em></em>
Answer:
1. The magnitude of the force from the spring on the object is zero on <em>Equilibrium.</em>
2. The magnitude of the force from the spring on the object is a maximum on <em>The top and bottom.</em>
3. The magnitude of the net force on the object is zero on <em>The Bottom.</em>
4. The magnitude of the force on the object is a maximum on <em>the Top.</em>
Explanation:
<em>1. Because the change in position delta X is zero.</em>
<em>2. Because of delta X.</em>
<em>3. Beacuse, the force of gravity and the force of the spring oppose each other to keep the block at rest, away from the equilibrium position.</em>
<em>4. Because, the force of the spring from compressiom and the force of gravity both act on the mass.</em>