Answer:
a) ω = 9.86 rad/s
b) ac = 194. 4 m/s²
c) minimum coefficient of static friction, µs = 19.8
Explanation:
a) angular speed, ω = 2πf, where f is frequency of revolution
1 rps = 6.283 rad/s, π = 3.142
ω = 2 * 3.14 * 0.25 * 6.28
ω = 9.86 rad/s
b) centripetal acceleration, a = rω²
where r is radius in meters; r = 200 cm or 2 m
a = 2 * 9.86²
a = 194. 4 m/s²
c) µs = frictional force/ normal force
frictional force = centripetal force = ma; where a is centripetal acceleration
normal force = mg; where g = 9.8 m/s²
µs = ma/mg = a/g
µs = 194.4 ms⁻²/9.8 ms⁻²
c) minimum coefficient of static friction, µs = 19.8
Answer
the answer is c because i did that before
Explanation:
Recall that

where
and
are the initial and final velocities, respecitvely;
is the acceleration; and
is the change in position.
So we have


(Normally, this equation has two solutions, but we omit the negative one because the car is moving in one direction.)
Convex.
Concave curved inward (like how a cave foes in) and convex curves outward. Reflected and refracted do not apply to a lens.
Answer:
∆T = Mv^2Y/2Cp
Explanation:
Formula for Kinetic energy of the vessel = 1/2mv^2
Increase in internal energy Δu = nCVΔT
where n is the number of moles of the gas in vessel.
When the vessel is to stop suddenly, its kinetic energy will be used to increase the temperature of the gas
We say
1/2mv^2 = ∆u
1/2mv^2 = nCv∆T
Since n = m/M
1/2mv^2 = mCv∆T/M
Making ∆T subject of the formula we have
∆T = Mv^2/2Cv
Multiple the RHS by Cp/Cp
∆T = Mv^2/2Cv *Cp/Cp
Since Y = Cp/CV
∆T = Mv^2Y/2Cp k
Since CV = R/Y - 1
We could also have
∆T = Mv^2(Y - 1)/2R k