<span>We can use Coulomb's law to find the force F acting on the proton that is released.
F = k x Q1 x Q2 / r^2
k = 9 x 10^9
Q1 is the charge on one proton which is 1.6 x 10^{-19} C
Q2 is the same charge on the other proton
r is the distance between the protons
F = (9x10^9) x (1.6 x 10^{-19} C) x (1.6 x 10^{-19} C) / (10^{-3})^2
F = 2.304 x 10^{-22} N
We can use the force to find the acceleration.
F = ma
a = F / m
a = (2.304 x 10^{-22} N) / (1.67 x 10^{-27} kg)
a = 1.38 x 10^5 m/s^2
The initial acceleration of the proton is 1.38 x 10^5 m/s^2</span>
The answer is D.
I hope this helps.
Answer: 4.0024 x 10^ -11 m or 0.040024 nm
Explanation:
λ = h c/ΔE
λ = wave lenght
h = 6.626 x 10 ^ -34 m² kg /s = planck constant
ΔE = 31 keV potential ( 1 keV = 1.6021 x 10^-16J)
c = velocity of light = 3 x 10⁸ m/s
substitute gives
λ = <u>6.626 x 10 ^ -34 m² kg /s x 3 x 10⁸ m/s</u> = 4.0024 x 10^ -11 m
31 x 1.6021x10^-16 J
the object has kinetic energy, because it is on the move!!
The correct answer is center. Hope this helps.