The problem states that the distance travelled (d) is
directly proportional to the square of time (t^2), therefore we can write this in
the form of:
d = k t^2
where k is the constant of proportionality in furlongs /
s^2
<span>Using the 1st condition where d = 2 furlongs, t
= 2 s, we calculate for the value of k:</span>
2 = k (2)^2
k = 2 / 4
k = 0.5 furlongs / s^2
The equation becomes:
d = 0.5 t^2
Now solving for d when t = 4:
d = 0.5 (4)^2
d = 0.5 * 16
<span>d = 8 furlongs</span>
<span>
</span>
<span>It traveled 8 furlongs for the first 4.0 seconds.</span>
The players acceleration is 3.33 m/s/s
Acceleration= Velocity/Time
A =10/3
Yes, yes, we know all of that. It certainly took you long enough to
get around to asking your question.
If
a = (14, 10.5, 0)
and
b = (4.62, 9.45, 0) ,
then, to begin with, neither vector has a z-component, and they
both lie in the x-y plane.
Their dot-product a · b = (14 x 4.62) + (10.5 x 9.45) =
(64.68) + (99.225) = 163.905 (scalar)
I feel I earned your generous 5 points just reading your treatise and
finding your question (in the last line). I shall cherish every one of them.
Acceleration is not the same as speeding up. It refers to any modification of motion's direction or speed. Accelerated motion is any movement that is not constant speed in a straight line.
<h3>What is meant by acceleration?</h3>
The rate at which an object's velocity for time changes is referred to as acceleration in mechanics. They are vector quantities and accelerations. The direction of the net force acting on an object determines the direction of its acceleration.
An object's velocity can alter depending on whether it moves faster or slower or in a different direction. A falling apple, the moon orbiting the earth, and a car stopped at a stop sign are a few instances of acceleration.
The rate at which velocity changes is called acceleration. Acceleration typically indicates a change in speed, but not necessarily. An item that follows a circular course while maintaining a constant speed is still moving forward because the direction of its motion is shifting.
To learn more about acceleration refer to:
brainly.com/question/605631
#SPJ4
Answer:
distance r from the uranium atom is 18.27 nm
Explanation:
given data
uranium and iron atom distance R = 44.10 nm
uranium atom = singly ionized
iron atom = doubly ionized
to find out
distance r from the uranium atom
solution
we consider here that uranium electron at distance = r
and electron between uranium and iron so here
so we can say electron and iron distance = ( 44.10 - r ) nm
and we know single ionized uranium charge q2= 1.602 ×
C
and charge on iron will be q3 = 2 × 1.602 ×
C
so charge on electron is q1 = - 1.602 ×
C
and we know F =
so now by equilibrium
Fu = Fi
=
put here k =
and find r
=

r = 18.27 nm
distance r from the uranium atom is 18.27 nm