Answer:
<em>It will occur zero times between midnight and one o'clock.</em>
Step-by-step explanation:
<u>Least Common Multiple (LCM)</u>
Three events keep James from sleeping: his clock ticking every 20 seconds, a tap dripping every 15 seconds, and his dog snoring every 27 seconds.
All three events happened together at midnight. They will happen together again the first time the numbers 20, 15, and 27 have a common multiple. This is the LCM.
List the prime factors of each number:
20: 2,2,5
15: 3,5
27: 3,3,3
Now multiply all the factors the maximum number of times they appear:
LCM=2*2*3*3*3*5=540
(a) All the events will happen together again after 540 minutes.
(b) Since 540 minutes = 9 hours, this event won't happen again until 9 am. Thus, it will occur zero times between midnight and one o'clock.
Answer:
The answer is 3 1/4
Step-by-step explanation:
I hope this helps! :)
Answer:
64 hope it helps
Step-by-step explanation:
Answer:
113
Step-by-step explanation:
Let the number of adult tickets sold =a
Let the number of student tickets sold =s
A total of 259 tickets were sold, therefore:
a+s=259
Adult tickets were sold for $24 each and student tickets were sold for $16 each.
Total Revenue = $5,312
Therefore:
24a+16s=5,312
We solve the two derived equations simultaneously.
From the first equation
a=259-s
Substitute a=259-s into 24a+16s=5,312
24(259-s)+16s=5,312
6216-24s+16s=5,312
-8s=5,312-6216
-8s=-904
Divide both sides by -8
s=113
Therefore, 113 student tickets were sold.