Wouldn't it be neat if an electron falling closer to the nucleus ... emitting a
photon ... actually gave out more energy than it needed to climb to its original
energy level by absorbing a photon ! If there were some miraculous substance
that could do that, we'd have it made.
All we'd need is a pile of it in our basement, with a bright light bulb over the pile,
connected to a tiny hand-crank generator.
Whenever we wanted some energy, like for cooking or heating the house, we'd
switch the light bulb on, point it towards the pile, and give the little generator a
little shove. It wouldn't take much to git 'er going.
The atoms in the pile would absorb some photons, raising their electrons to higher
energy levels. Then the electrons would fall back down to lower energy levels,
releasing more energy than they needed to climb up. We could take that energy,
use some of it to keep the light bulb shining on the pile, and use the extra to heat
the house or run the dishwasher.
The energy an electron absorbs when it climbs to a higher energy level (forming
the atom's absorption spectrum) is precisely identical to the energy it emits when
it falls back to its original level (creating the atom's emission spectrum).
Energy that wasn't either there in the atom to begin with or else pumped
into it from somewhere can't be created there.
You get what you pay for, or, as my grandfather used to say, "For nothing
you get nothing."
<h2>Answer: Gravitational attraction
</h2>
Gravity force causes the clouds of dust and gas to form a protostar. As this <u>attraction force</u> is responsible for gathering and compressing the existing elements in the cloud of gas and dust, heating them during this process.
Then, when the amount of material accumulated by gravitational contraction is large enough, and the temperature and pressure reached high enough, the <u>nuclear fusion</u> process will begin.
To understand it better: The hydrogen nuclei will begin to fuse, generating helium nuclei in the process and releasing huge amounts of energy.
It should be noted that the protostars radiate half of the energy contributed by the gravitational collapse and the other half is invested in heating its core.
Answer:
A. If two objects collide, each object exerts a force in the same direction as the other.
Explanation:
Answer:
A). A few of the positive particles aimed at a gold foil seemed to bounce back off of the thin metallic foil.
Explanation:
Scientists decided to change the model of the atom when they discovered new evidence that showed 'few of the positive particles aimed at a gold foil seemed to bounce back off of the thin metallic foil.' On this ground, <u>Rutherford concluded that atom is mostly made up of empty space and thus, he proposed a nucleus model of atom in which the atom comprises of the tiny and positively charged nucleus is surrounded by electrons with a negative charge</u>. Thus, <u>option A</u> is the correct answer.
Answer: Instantaneous speed.
Explanation: