Answer:
A, B, and C are good reasons for my friend not to worry
Explanation:
The following reasons are reason not to worry
A. The only way to lose additional partial credit on a hint is by using the "give up" button or entering incorrect answers. Leaving the question blank will not cost you any credit (Regardless of whether you open a link or not, you will lose credit if you enter a wrong answer or if you give up on a question by hitting the "give up" button. Even after opening a hint, you can leave the question blank if the hint does not provide relevant hints or if the hint brings up more question. Once the question is left blank, you do not lose additional partial credit)
B. As an incentive for thinking hard about the problem, your instructor may choose to apply a small hint penalty, but this penalty is the same whether the hint simply gives information or asks another question (In a situation where you decide to use a hint, the instructor may have put a penalty for using the hint, so whether it asks a question or help in the solution of the question, as long as the hint is consulted, the hint penalty still applies)
C. Getting the correct answer to the question in a hint actually gives you some partial credit, even if you still can't answer the original question (An advantage of using hint is that you get some partial credit for using it if you answer the hint question correctly and fails to answer the original question)
Photon energy is directly proportional to the frequency of electromagnetic radiation.
(That would also mean that it's inversely proportional to the wavelength.)
So the photon energy increases as you scan the chart of visible colors
moving from the red end of the rainbow to the blue end.
Answer:
145 m
Explanation:
Given:
Wavelength (λ) = 2.9 m
we know,
c = f × λ
where,
c = speed of light ; 3.0 x 10⁸ m/s
f = frequency
thus,

substituting the values in the equation we get,

f = 1.03 x 10⁸Hz
Now,
The time period (T) = 
or
T =
= 9.6 x 10⁻⁹ seconds
thus,
the time interval of one pulse = 100T = 9.6 x 10⁻⁷ s
Time between pulses = (100T×10) = 9.6 x 10⁻⁶ s
Now,
For radar to detect the object the pulse must hit the object and come back to the detector.
Hence, the shortest distance will be half the distance travelled by the pulse back and forth.
Distance = speed × time = 3 x 10^8 m/s × 9.6 x 10⁻⁷ s) = 290 m {Back and forth}
Thus, the minimum distance to target =
= 145 m
Answer:
A lens placed in a transparent liquid becomes invisible because when refractive index of the material of the lens is equal to the refractive index of the liquid in which lens is placed under this condition no bending of light takes place when it travels from liquid to the lens, so both will start behaving like both are same things.
Explanation:
hope it helps :))
Explanation:
Below is an attachment containing the solution.