Answer:
Its a social media platform
Explanation:
Answer
given,
Side of copper plate, L = 55 cm
Electric field, E = 82 kN/C
a) Charge density,σ = ?
using expression of charge density
σ = E x ε₀
ε₀ is Permittivity of free space = 8.85 x 10⁻¹² C²/Nm²
now,
σ = 82 x 10³ x 8.85 x 10⁻¹²
σ = 725.7 x 10⁻⁹ C/m²
σ = 725.7 nC/m²
change density on the plates are 725.7 nC/m² and -725.7 nC/m²
b) Total change on each faces
Q = σ A
Q = 725.7 x 10⁻⁹ x 0.55²
Q = 219.52 nC
Hence, charges on the faces of the plate are 219.52 nC and -219.52 nC
I uploaded the answer to a file hosting. Here's link:
tinyurl.com/wpazsebu
Horizontal distance covered by a projectile is X = Vix *T
where Vix is the initial horizontal component of velocity and T is time taken by the projectile
Vix = ViCos theta
In question they said that initial velocity and angle is same on earth and moon
so Vix would remains same
now let's see about time taken T
time taken to reach the highest point
Vfy = Viy +gt
at highest point vertical velocity become zero so Vfy =0
0 = Vi Sin theta + gt
t = Vi Sintheta /g
Total time taken to land will be twice of that
On earth
Te= 2t
Te = 2Sinθ/g
on moon g is one-sixth of g(earth)
Tm = 2Sinθ/(g/6)
Tm = 6(2Sinθ/g)
Tm = 6Te
so total time taken by the projectile on moon will be six times the time taken on earth
From first equation X = Vix*T
we can see that X will also be 6 times on moon than earth
so projectile will cover 6 times distance on moon than on earth