Answer:
6 tiles
Step-by-step explanation:
Because 2,4,6,8,10,12
Answer:
Please check the explanation
Step-by-step explanation:
Given the function

Given that the output = -3
i.e. y = -3
now substituting the value y=-3 and solve for x to determine the input 'x'


switch sides

Add 1 to both sides


![\mathrm{For\:}g^3\left(x\right)=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt[3]{f\left(a\right)},\:\sqrt[3]{f\left(a\right)}\frac{-1-\sqrt{3}i}{2},\:\sqrt[3]{f\left(a\right)}\frac{-1+\sqrt{3}i}{2}](https://tex.z-dn.net/?f=%5Cmathrm%7BFor%5C%3A%7Dg%5E3%5Cleft%28x%5Cright%29%3Df%5Cleft%28a%5Cright%29%5Cmathrm%7B%5C%3Athe%5C%3Asolutions%5C%3Aare%5C%3A%7Dg%5Cleft%28x%5Cright%29%3D%5Csqrt%5B3%5D%7Bf%5Cleft%28a%5Cright%29%7D%2C%5C%3A%5Csqrt%5B3%5D%7Bf%5Cleft%28a%5Cright%29%7D%5Cfrac%7B-1-%5Csqrt%7B3%7Di%7D%7B2%7D%2C%5C%3A%5Csqrt%5B3%5D%7Bf%5Cleft%28a%5Cright%29%7D%5Cfrac%7B-1%2B%5Csqrt%7B3%7Di%7D%7B2%7D)
Thus, the input values are:
![x=-\sqrt[3]{2}+5,\:x=\frac{\sqrt[3]{2}\left(1+5\cdot \:2^{\frac{2}{3}}\right)}{2}-i\frac{\sqrt[3]{2}\sqrt{3}}{2},\:x=\frac{\sqrt[3]{2}\left(1+5\cdot \:2^{\frac{2}{3}}\right)}{2}+i\frac{\sqrt[3]{2}\sqrt{3}}{2}](https://tex.z-dn.net/?f=x%3D-%5Csqrt%5B3%5D%7B2%7D%2B5%2C%5C%3Ax%3D%5Cfrac%7B%5Csqrt%5B3%5D%7B2%7D%5Cleft%281%2B5%5Ccdot%20%5C%3A2%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%5Cright%29%7D%7B2%7D-i%5Cfrac%7B%5Csqrt%5B3%5D%7B2%7D%5Csqrt%7B3%7D%7D%7B2%7D%2C%5C%3Ax%3D%5Cfrac%7B%5Csqrt%5B3%5D%7B2%7D%5Cleft%281%2B5%5Ccdot%20%5C%3A2%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%5Cright%29%7D%7B2%7D%2Bi%5Cfrac%7B%5Csqrt%5B3%5D%7B2%7D%5Csqrt%7B3%7D%7D%7B2%7D)
And the real input is:
![x=-\sqrt[3]{2}+5](https://tex.z-dn.net/?f=x%3D-%5Csqrt%5B3%5D%7B2%7D%2B5)
Answer:
A t-score of 1.701 should be used to find the 95% confidence interval for the population mean
Step-by-step explanation:
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 29 - 1 = 28
Now, we have to find a value of T, which is found looking at the t table, with 28 degrees of freedom(y-axis) and a confidence level of 0.95(
). So we have T = 1.701.
A t-score of 1.701 should be used to find the 95% confidence interval for the population mean
2 modes are radian and degree, should be set on radian for most classes, and you change by pressing mode