Y = 90 degrees
1) The angles on a straight line add to 180 degrees so 180-110= 70 degrees.
2) The angles in a triangle add to 180 degrees so 70+70= 140 degrees. The angle at the top of the triangle will have to be 40 degrees as 140+40= 180 degrees.
3) As x is half the angle at the top of the triangle (40 degrees), x will equal 20 degrees.
4) As the angles in a triangle add to 180 degrees 20+70=90 degrees 180-90=90 degrees.
5) Answer = 90 degrees
Answer:
idk
Step-by-step explanation:
idk
Answer:
I belive its 300
Step-by-step explanation:
Brainlist?
Answer:
Remember that a perfect square trinomial can be factored into the form (a+b)^2
or (a-b)^2
Examples:
(x+2)(x+2) is a perfect sq trinomial --> x^2+4x+4
(x-3)(x-3) is a perfect sq trinomial --> x^2-6x+9
(x+2)(x-3) is not a perfect square trinomial because its not in the form (a+b)^2 or (a-b)^2
Now to answer your question,
for the first one, x^2-16x-64, you cannot factor it so it is not a perfect square trinomial
for the second one, 4x^2 + 12x + 9, you can factor that into (2x+3)(2x+3) = (2x+3)^2 so this is a perfect square trinomial
for the third one, x^2+20x+100 can be factored into (x+10)(x+10) so this is also a perfect square trinomial
for the fourth one, x^2+4x+16 cannot be factored so this is not a perfect square trinomial
Therefore, your answer is choices 2 and 3
Read more on Brainly.com - brainly.com/question/10522355#readmore
Step-by-step explanation:
Answer: The system of equations is:
x + 2y + 2 = 4
y - 3z = 9
z = - 2
The solution is: x = -22; y = 15; z = -2;
Step-by-step explanation: ONe way of solving a system of equations is using the Gauss-Jordan Elimination.
The method consists in transforming the system into an augmented matrix, which is writing the system in form of a matrix and then into a <u>Row</u> <u>Echelon</u> <u>Form,</u> which satisfies the following conditions:
- There is a row of all zeros at the bottom of the matrix;
- The first non-zero element of any row is 1, which called leading role;
- The leading row of the first row is to the right of the leading role of the previous row;
For this question, the matrix is a Row Echelon Form and is written as:
![\left[\begin{array}{ccc}1&2&2\\0&1&3\\0&0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%262%5C%5C0%261%263%5C%5C0%260%261%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{ccc}4\\9\\-2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%5C%5C9%5C%5C-2%5Cend%7Barray%7D%5Cright%5D)
or in system form:
x + 2y + 2z = 4
y + 3z = 9
z = -2
Now, to determine the variables:
z = -2
y + 3(-2) = 9
y = 15
x + 30 - 4 = 4
x = - 22
The solution is (-22,15,-2).