Given:

To find:
Select the true statements from the given options about the given value.
Solution:
We have,

It can be written as

![[\because \log(ab)=\log a+\log b]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%5Clog%28ab%29%3D%5Clog%20a%2B%5Clog%20b%5D)



Clearly, the value of x lies between 4 and 5. So,
and
.
Therefore, the correct options are C and D.
I say around 210-220 is a good answer
So we know that 3,4 and 5 are pythagorean triplet and these result from a right triangle sides length
- than 3,4 and 5 mean right triangle so 2,5 and 4 mean acute triangle sure or you can prove it in this way too
- than 3^2 +4^2 =5^2 => a right triangle so than
2^2 +4^2 < 5^2 => an acute triangle
hope helped
Answer:
there is a cluster from 1-4
there is a gap from 5-7
The spread is from 1-8
Step-by-step explanation:
These are all true if you look... there is a bunch from 1-4, there is none from 5-7, and all of them are within 1-8, but the highest amount isn't at 3.
so, this is a quadratic equation, meaning two solutions, and we have a factored form of it, meaning you can get the solutions by simply zeroing out the f(x).
![\bf \stackrel{f(x)}{0}=-(x-3)(x+11)\implies 0=(x-3)(x+11)\implies x= \begin{cases} 3\\ -11 \end{cases} \\\\\\ \boxed{-11}\stackrel{\textit{\large 7 units}}{\rule[0.35em]{10em}{0.25pt}}-4\stackrel{\textit{\large 7 units}}{\rule[0.35em]{10em}{0.25pt}}\boxed{3}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bf%28x%29%7D%7B0%7D%3D-%28x-3%29%28x%2B11%29%5Cimplies%200%3D%28x-3%29%28x%2B11%29%5Cimplies%20x%3D%20%5Cbegin%7Bcases%7D%203%5C%5C%20-11%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20%5Cboxed%7B-11%7D%5Cstackrel%7B%5Ctextit%7B%5Clarge%207%20units%7D%7D%7B%5Crule%5B0.35em%5D%7B10em%7D%7B0.25pt%7D%7D-4%5Cstackrel%7B%5Ctextit%7B%5Clarge%207%20units%7D%7D%7B%5Crule%5B0.35em%5D%7B10em%7D%7B0.25pt%7D%7D%5Cboxed%7B3%7D)
so the zeros/solutions are at x = 3 and x = -11, now, bearing in mind the vertex will be half-way between those two, checking the number line, that midpoint will be at x = -4, so the vertex is right there, well, what's f(x) when x = -4?
![\bf f(-4)=-(-4-3)(-4+11)\implies f(-4)=7(7)\implies f(-4)=49 \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill \stackrel{vertex}{(-4~~,~~49)}~\hfill](https://tex.z-dn.net/?f=%5Cbf%20f%28-4%29%3D-%28-4-3%29%28-4%2B11%29%5Cimplies%20f%28-4%29%3D7%287%29%5Cimplies%20f%28-4%29%3D49%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20%5Cstackrel%7Bvertex%7D%7B%28-4~~%2C~~49%29%7D~%5Chfill)