1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andreas93 [3]
3 years ago
15

Please help!!! Thank youuu!!! >w

Mathematics
1 answer:
yanalaym [24]3 years ago
7 0
-2p+1 i think would be the answer since youd have to combine the numbers with the variable and then combine the numbers without the variable
You might be interested in
What do you call the horizontal number line in the Cartesian plane ?​
Alexandra [31]

Answer:

x-axis

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Una escalera de 131313 metros está recargada contra una pared cuando su base empieza a resbalar. Cuando la base está a 121212 me
Artyom0805 [142]

Answer:

El ángulo entre el piso y la escalera está cambiando a una razón de -1 radian por segundo.

Step-by-step explanation:

Sea x la distancia horizontal entre la pared y la base de la escalera y l la longitud de la escalera, medidas en metros. Además, tenemos que \theta es el ángulo entre la escalera y el piso, medido en radianes.

Si la pared y el piso son ortogonales entre sí, entonces podemos utilizar la siguiente relación trigonométrica que relaciona las variables anteriores:

\cos \theta = \frac{x}{l}  (1)

Por diferenciación implícita y la definición de razón de cambio tenemos que:

-\sin \theta \,\dot \theta = \frac{\dot x}{l} (2)

Donde:

\dot x - Razón de cambio de la distancia horizontal entre la pared y la base de la escalera, medida en metros por segundo.

\dot \theta - Razón de cambio del ángulo entre el piso y la escalera, medida en radianes por segundo.

Pero tenemos que el seno del ángulo está definido por:

\sin \theta = \frac{\sqrt{l^{2}-x^{2}}}{l} (3)

Si aplicamos (3) en (2), expandimos la ecuación como sigue:

-\frac{\sqrt{l^{2}-x^{2}}}{l}\,\dot \theta = \frac{\dot x}{l}

\dot \theta = - \frac{\dot x}{\sqrt{l^{2}-x^{2}}} (4)

Si tenemos que \dot x = 5\,\frac{m}{s}, l = 13\,m y x = 12\,m, entonces la razón de cambio del ángulo es:

\dot \theta = -\frac{\left(5\,\frac{m}{s} \right)}{\sqrt{(13\,m)^{2}-(12\,m)^{2}}}

\dot \theta \approx -1\,\frac{rad}{s}

El ángulo entre el piso y la escalera está cambiando a una razón de -1 radian por segundo.

7 0
3 years ago
An apple orchard harvested 3,584 apples and separated them evenly into 112 bags. How many apples are in each bag?
IgorLugansk [536]

Answer: 32

Step-by-step explanation:

3,584 / 112 = 32

4 0
4 years ago
I Need with help with 55
shepuryov [24]

Answer:

y = -3x -6

Step-by-step explanation:

The y intercept is -6 and the slope is -3

Using the slope intercept form of a line

y = mx+b where m is the slope and b is the y intercept

y = -3x -6

5 0
3 years ago
Triangle ABC has vertices at A(2,3),B(-4,-3) and C(2,-3) find the coordinates of each point of concurrency.
dem82 [27]

Answer:

Circumcenter =(-1,0)

Orthocenter =(2,-3)

Step-by-step explanation:  

Given : Points A = (2,3), B = (-4,-3), C = (2,-3)  

Formula used :  

→Mid point of two points- (\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})

→Slope of two points - \frac{y_2-y_1}{x_2-x_1})

→Perpendicular of a line = \frac{-1}{slope of line})

Circumcenter- The point where the perpendicular bisectors of a triangle meets.

Orthocenter-The intersecting point for all the altitudes of the triangle.

To find out the circumcenter we have to solve any two bisector equations.

We solve for line AB and AC

So, mid point of AB =(\frac{2-4}{2},\frac{3-3}{2})=(-1,0)

Slope of AB =\frac{-3-3}{-4-2}=1

Slope of the bisector is the negative reciprocal of the given slope.  

So, the slope of the perpendicular bisector = -1  

Equation of AB with slope -1 and the coordinates (-1,0) is,  

(y – 0) = -1(x – (-1))  

y+x=-1………………(1)  

Similarly, for AC  

Mid point of AC = (\frac{2+2}{2},\frac{3-3}{2})=(2,0)

Slope of AC = \frac{-3-3}{2-2}=\frac{-6}{0}  

Slope of the bisector is the negative reciprocal of the given slope.  

So, the slope of the perpendicular bisector = 0  

Equation of AC with slope 0 and the coordinates (2,0) is,  

(y – 0) = 0(x – 2)  

y=0 ………………(2)  

By solving equation (1) and (2),  

put y=0 in equation (1)

y+x=-1

0+x=-1

⇒x=-1  

So the circumcenter(P)= (-1,0)

To find the orthocenter we solve the intersections of altitudes.

We solve for line AB and BC

So, mid point of AB =(\frac{2-4}{2},\frac{3-3}{2})=(-1,0)

Slope of AB =\frac{-3-3}{-4-2}=1

Slope of the bisector is the negative reciprocal of the given slope.  

So, the slope of CF = -1  

Equation of AB with slope -1 and the coordinates (-1,0) gives equation CF  

(y – 0) = -1(x – (-1))  

y+x=-1………………(3)  

Similarly, mid point of BC =(\frac{-4+2}{2},\frac{-3-3}{2})=(-1,-3)

Slope of AB =\frac{-3+3}{-4-2}=0

Slope of the bisector is the negative reciprocal of the given slope.  

So, the slope of AD = 0

Equation of AB with slope 0 and the coordinates (-1,-3) gives equation AD

(y-(-3)) = 0(x – (-1))  

y+3=0

y=-3………………(4)  

Solve equation (3) and (4),

Put y=-3 in equation (3)

y+x=-1

-3+x=-1

x=2

Therefore, orthocenter(O)= (2,-3)


7 0
4 years ago
Other questions:
  • Darnell rented a moving truck. the weight of the empty truck was 7,860 pounds. when darness filled the truck with his items, it
    8·1 answer
  • Over the past several months, the water level of a lake has been decreasing by 7% each
    14·1 answer
  • Which statement comparing 6² + 14 ÷ 2 and 100−82 is true?
    14·2 answers
  • Yanika is teaching a swim class. She needs to divide the class into teams for a relay race. There is 18 students.
    10·1 answer
  • What is one plus four
    5·2 answers
  • If a truck goes 30 km in 30 minutes what is its average speed?
    13·1 answer
  • HURRY. Write a ratio for the following word phrase. Write the fraction in lowest terms.
    6·1 answer
  • A system of linear equations is shown below where
    13·1 answer
  • Is anyone good at range?
    5·2 answers
  • Which of the following shows the correct evaluation for the exponential expression 2 over 3 to the power of 5?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!