Answer:
FALSE!!! Thermal energy can be transformed to heat.
Explanation:
Answer:
Fission. When a large fissile atomic nucleus such as uranium-235 or plutonium-239 absorbs a neutron, it may undergo nuclear fission. The heavy nucleus splits into two or more lighter nuclei, (the fission products), releasing kinetic energy, gamma radiation, and free neutrons.
Explanation:
Complete Question
You determine that it takes 26.0 mL of base to neutralize a sample of your unknown acid solution. The pH of the solution was 7.82 when exactly 13 mL of base had been added, you notice that the concentration of the unknown acid was 0.1 M. What is the pKa of your unknown acid?
Answer:
The pK_a value is
Explanation:
From the question we are told
The volume of base is 
The pH of solution is 
The concentration of the acid is 
From the pH we can see that the titration is between a strong base and a weak acid
Let assume that the the volume of acid is 
Generally the concentration of base

Substituting value


When 13mL of the base is added a buffer is formed
The chemical equation of the reaction is

Now before the reaction the number of mole of base is
![No \ of \ moles[N_B] = C_B * V_B](https://tex.z-dn.net/?f=No%20%5C%20of%20%5C%20moles%5BN_B%5D%20%20%3D%20%20C_B%20%2A%20V_B)
Substituting value

Now before the reaction the number of mole of acid is

Substituting value


Now after the reaction the number of moles of base is zero i.e has been used up
this mathematically represented as

The number of moles of acid is


The pH of this reaction can be mathematically represented as
![pH = pK_a + log \frac{[base]}{[acid]}](https://tex.z-dn.net/?f=pH%20%20%3D%20pK_a%20%2B%20log%20%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D)
Substituting values

Answer:
c = 0.898 J/g.°C
Explanation:
1) Given data:
Mass of water = 23.0 g
Initial temperature = 25.4°C
Final temperature = 42.8° C
Heat absorbed = ?
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Specific heat capacity of water is 4.18 J/g°C
ΔT = 42.8°C - 25.4°C
ΔT = 17.4°C
Q = 23.0 g × × 4.18 J/g°C × 17.4°C
Q = 1672.84 j
2) Given data:
Mass of metal = 120.7 g
Initial temperature = 90.5°C
Final temperature = 25.7 ° C
Heat released = 7020 J
Specific heat capacity of metal = ?
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 25.7°C - 90.5°C
ΔT = -64.8°C
7020 J = 120.7 g × c × -64.8°C
7020 J = -7821.36 g.°C × c
c = 7020 J / -7821.36 g.°C
c = 0.898 J/g.°C
Negative sign shows heat is released.
amino group
carboxyl group
R-group
single Hydrogen arom