28÷1.5=18.67
meaning that more, than 17 discs can be placed in the box.
Answer:
The correct answer is option C.
The mid point of the line segment.
Step-by-step explanation:
the perpendicular line segment construction twice using paper folding
we have to find the mid point of the given line segment.
We get the midpoint easily when fold the paper correctly
Therefore the correct answer is option C.
The mid point of the line segment.
Answer:
![\frac{\sqrt[3]{16y^4}}{x^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B16y%5E4%7D%7D%7Bx%5E2%7D)
Step-by-step explanation:
The options are missing; However, I'll simplify the given expression.
Given
![\frac{\sqrt[3]{32x^3y^6}}{\sqrt[3]{2x^9y^2} }](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B32x%5E3y%5E6%7D%7D%7B%5Csqrt%5B3%5D%7B2x%5E9y%5E2%7D%20%7D)
Required
Write Equivalent Expression
To solve this expression, we'll make use of laws of indices throughout.
From laws of indices ![\sqrt[n]{a} = a^{\frac{1}{n}}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Ba%7D%20%20%3D%20a%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D)
So,
gives

Also from laws of indices

So, the above expression can be further simplified to

Multiply the exponents gives

Substitute
for 32


From laws of indices

This law can be applied to the expression above;
becomes

Solve exponents


From laws of indices,
; So,
gives

The expression at the numerator can be combined to give

Lastly, From laws of indices,
; So,
becomes
![\frac{\sqrt[3]{(2y)}^{4}}{x^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B%282y%29%7D%5E%7B4%7D%7D%7Bx%5E2%7D)
![\frac{\sqrt[3]{16y^4}}{x^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B16y%5E4%7D%7D%7Bx%5E2%7D)
Hence,
is equivalent to ![\frac{\sqrt[3]{16y^4}}{x^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B16y%5E4%7D%7D%7Bx%5E2%7D)
7 - 9w = - 29
Subtract 7 from both sides
- 9w = - 36
Divide by - 9 on both sides
w = 4
F(x) = 2x + 5
-----------------------------------
Find f(x + 1) :
-----------------------------------
f(x +1) = 2(x + 1) + 5
f(x +1) = 2x + 2 + 5
f(x + 1) = 2x + 5
-----------------------------------
Find -2f(x+1):
-----------------------------------
-2(fx+1) = -2(2x + 5)
-2(fx+1) = -4x - 10
----------------------------------------------------------------------
Answer: -2(fx+1) = -4x - 10
----------------------------------------------------------------------