Answer:
The solution is ![\frac{1}{10} * tan^{-1}[\frac{e^{2x}}{5} ] + C](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B10%7D%20%2A%20tan%5E%7B-1%7D%5B%5Cfrac%7Be%5E%7B2x%7D%7D%7B5%7D%20%5D%20%2B%20%20C)
Step-by-step explanation:
From the question
The function given is 
The indefinite integral is mathematically represented as

Now let 
=> 
=> 
So

![= \frac{1}{2} \frac{tan^{-1} [\frac{u}{5} ]}{5} + C](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Cfrac%7Btan%5E%7B-1%7D%20%5B%5Cfrac%7Bu%7D%7B5%7D%20%5D%7D%7B5%7D%20%20%2B%20%20C)
Now substituting for u
![\frac{1}{10} * tan^{-1}[\frac{e^{2x}}{5} ] + C](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B10%7D%20%2A%20tan%5E%7B-1%7D%5B%5Cfrac%7Be%5E%7B2x%7D%7D%7B5%7D%20%5D%20%2B%20%20C)
it would equal the same mixed number. 5 2/3
Answer:
15
Step-by-step explanation:
since c is the centroid, therefore PX=XQ=1/2 x PQ
∴ PX=15
Answer:
5m + 4p
Step-by-step explanation:
Answer:
Given the function: y=f(x) = 3x+2
when x=-2 at the beginning of the interval [-2, 5],
then;
y = 3x+2 begins at
y= 3(-2)+2 = -6+2= -4.
and
when x=5 at the end of the interval [-2, 5],
y = 3x+2 ends up at
y= 3(5)+2 = 15+2= 17.
So,
y has changed -4 to 17, which is a change of 17-(-4)= 17+4 = 21
and x has changed from -2 to 5, which is a change of 5-(-2)=5+2=7
So, the average rate of change of y with respect to x over the interval
[-2, 5] is given by ;
=
Therefore, the average rate of change y with respect to x over the interval is, 3
Step-by-step explanation: