Answer:
Yes, we can conclude that Triangle ABC is similar to triangle DEF because the measures of the 3 angles of both triangles are congruent.
Step-by-step explanation:
We have the measure of 2 angles from both triangles, and we know that triangles have 180°, so we can solve for the measure of the third angle for both triangles.
Triangle ABC:
Measure of angle A= 60°
Measure of angle C= 40°
Measure of angle B = 180°- (measure of angle A + measure of angle C) = 180° - (60° + 40°) = 80°
Triangle DEF
Measure of angle E= 80°
Measure of angle F= 40°
Measure of angle D= 180° - (measure of angle E + measure of angle F) = 180° - (80° + 40°) = 60°
The measures of the angles in Triangle ABC are: 60°, 40°, and 80°.
The measures of the angles in Triangle DEF are: 60°, 40°, and 80°.
Since the measure of 3 angles of the two triangles are the same, we know that the two triangles are similar.
8.romb
Step-by-step explanation:
thats all I know
Answer:
73,188
Step-by-step explanation:
fees plus costs minus expenses
Answer:
The population parameter of this study is the population mean.
Step-by-step explanation:
A population parameter is a numerical measure representing a certain characteristic of the population. For example, population mean, population variance, population proportion, and so on.
The population parameter is computed using all the values of the population.
The population parameter can be estimated using the sample statistic. If the value of the population parameter is not known, then a random sample of large size, say <em>n</em> ≥ 30 can be selected from the population and the statistic value can be computed. This statistic value is considered as the point estimate of the parameter. It is also known as the unbiased estimator of the parameter.
In this case the survey involved sampling of 1500 Americans to estimate the mean dollar amount that Americans spent on health care in the past year.
The sample selected is used to compute the sample mean dollar amount that Americans spent on health care.
So, the population parameter of this study is the population mean.